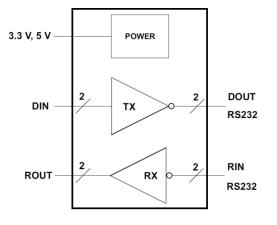


3V to 5.5V, 250kbps RS-232 Transceivers

Description

The BL13232E consists of two drivers, two receivers, and a dual charge-pump circuit with ± 12 kV IEC 61000-4-2 Contact Discharge ESD protection.


The BL13232E meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3V to 5.5V supply. The device operates at data signaling rates up to 250 kbps.

The BL13232E is available in SOP16 and TSSOP16 package.

Features

- ▶ ESD protection for RS-232 Bus Pins
 - ±12kV (IEC61000-4-2, Contact Discharge)
 - ±15kV (IEC61000-4-2, Air-Gap Discharge)
- Meets the Requirements of TIA/EIA-232-F standard
- ▶ Wide Power Supply Range: Single +3V to +5.5V
- Operates up to 250kbps
- Two Drivers and Two Receivers
- \blacktriangleright External Capacitors: 4 × 0.1 µF
- Accepts 5V Logic Input With 3.3V Supply

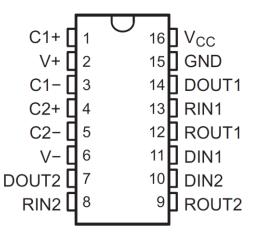
Function Block

Applications

- Battery-Powered Equipment
- Industry Human Machine Interface
- Notebook, Computers
- Printers

Ordering Information

Part Number	Package	Operation Temp.
BL13232ESO	SOP16	-40∼ + 125°C
BL13232ETS	TSSOP16	-40∼ + 125°C


Marking Information

(SOP16 & TSSOP16)

Y = Year Code WW = Week Code SSSSS = Product Trace Code

Pin Configuration and Functions

PIN NO.	NAME	I/O	DESCRIPTION	
1	C1+	—	Positive lead of C1 capacitor	
2	V+	0	Positive charge pump output for storage capacitor only	
3	C1-	—	Negative lead of C1 capacitor	
4	C2+	_	Positive lead of C2 capacitor	
5	C2-	—	Negative lead of C2 capacitor	
6	V–	0	Negative charge pump output for storage capacitor only	
7	DOUT2	0	RS232 Driver Output	
8	RIN2	Ι	RS232 Receiver Input	
9	ROUT2	0	TTL/CMOS Receiver Output	

10	DIN2	Ι	TTL/CMOS Driver Input
11	DIN1	Ι	TTL/CMOS Driver Input
12	ROUT1	0	TTL/CMOS Receiver Output
13	RIN1	Ι	RS232 Receiver Input
14	DOUT1	0	RS232 Driver Output
15	GND	_	Ground
16	VCC		Supply Voltage

Absolute Maximum Ratings

			MIN	MAX	UNIT
Vcc	Supply voltage		-0.3	6	V
V+	Positive output supply voltage		-0.3	7	V
V–	Negative output supply voltage		0.3	-7	V
$V^{+} - V^{-}$	Supply voltage difference			13	V
		Drivers	-0.3	6	V
VI	Input voltage	Receivers	-25	25	V
		Drivers	-13.2	13.2	V
Vo Output voltage	Output voltage	Receivers	-0.3	VCC + 0.3	V
TJ	Operating virtual junction temper	ature		150	°C
T _{stg}	Storage temperature		-65	150	°C

Note 1 : Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

(Test conditions: $C1-C4 = 0.1\mu F$ at $V_{CC} = 3.3V \pm 0.3V$; $C1 = 0.047\mu F$, $C2-C4 = 0.33\mu F$ at $V_{CC} = 5V \pm 0.5V$)

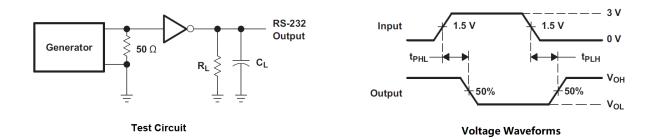
	•						
				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 \text{ V}$	3	3.3	3.6	V
			$V_{CC} = 5 V$	4.5	5	5.5	
X 7	Driver high-level input	DDI	$V_{CC} = 3.3 V$	2		5.5	
V_{IH}	voltage	DIN	$V_{CC} = 5 V$	2.4		5.5	V
V_{IL}	Driver low-level input	DIN		0		0.8	V
V_{I}	Receiver input voltage	RIN		-25		25	V
$T_{\rm A}$	Operating free-air tempera	iture		-40		125	C

Electrical Characteristics

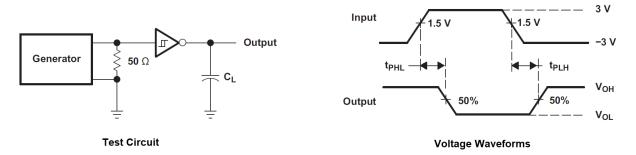
(Test conditions: C1–C4 = 0.1μ F at V_{CC} = $3.3V\pm0.3V$; C1 = 0.047μ F, C2–C4 = 0.33μ F at V_{CC} = $5V\pm0.5V$, T_A = $-40\sim125^{\circ}$ C, unless otherwise noted. Typical values are at T_A = $+25^{\circ}$ C.)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Icc	Supply current	No load, $V_{CC} = 3.3$ V or 5 V		1.5		mA
Drive	r					
Voh	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = GND	5	5.4		V
Vol	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V_{CC}	-5	-5.4		V
I _{IH}	High-level input current	$V_I = V_{CC}$		±0.01	±1	μΑ
I_{IL}	Low-level input current	V _I at GND		±0.01	±1	μΑ
Ios Short-circuit outpu		$V_{CC} = 3.6 \text{ V}, V_O = 0 \text{ V}$				
	Short-circuit output current	$V_{CC} = 5.5 \text{ V}, V_O = 0 \text{ V}$		±30	±60	mA
ro	Output resistance	V _{CC} , V+, and V– = 0 V, V _O = ± 2 V	300	10M		Ω
Rece	eiver			1		
Voh	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{\rm CC}-0.6$	$V_{CC} - 0.1$		V
Vol	Low-level output voltage	$I_{OL} = 1.6 \text{ mA}$			0.4	V
V_{IT^+}	Positive-going input	VCC = 3.3 V		1.5	2.4	
	threshold voltage	VCC = 5 V		2.0	2.4	V
VIT-	Negative-going input	VCC = 3.3 V	0.6	1.1		
	threshold voltage	VCC = 5 V	0.8	1.5		V
V_{hys}	Input hysteresis (V _{IT+} – V _{IT-})			0.4		V
ri	Input resistance	$VI = \pm 3 V$ to $\pm 25 V$	3	5	7	kΩ

Note 2: Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.



Switching Characteristics


(Test conditions: C1–C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2–C4=0.33 μ F at V_{CC}=5V±0.5V, T_A = -40~125°C, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	Maximum data rate	$R_L = 3 \text{ k}\Omega$, $C_L = 1000 \text{ pF}$, One DOUT switching	250			kbps
t _{sk(p)}	Driver pulse skew	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 150 \text{ pF}$ to 2500 pF, see Figure 1		100		ns
SR(tr)	Driver slew rate, transition region	$R_{L} = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, C_{L} = 150 \text{ pF}$ $V_{CC} = 3.3 \text{ V} \text{ to } 1000 \text{pF}$	4		30	V/µs
t _{PLH}	Receiver propagation delay time, low- to high-level	$C_L = 150 \text{ pF}$		150		ns
tphl	Receiver propagation delay time, high- to low-level	see Figure 2		150		ns
t _{sk(p)}	Receiver pulse skew			60		ns

Note 3: Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

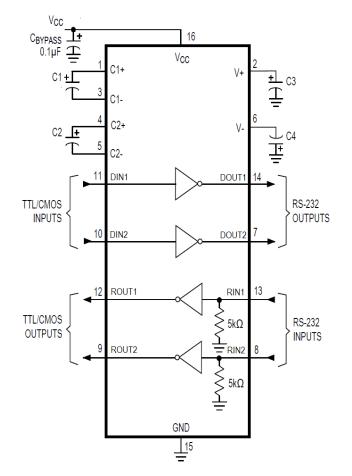
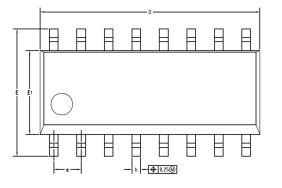


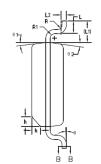
Figure 2. Receiver Propagation Delay Times

Typical Application

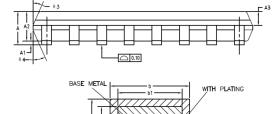
Nonpolorized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

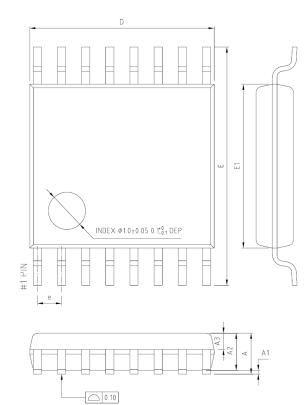
Figure 3. Typical Operating Circuit


VCC	C1	C2, C3, C4
$3.3~V\pm0.3~V$	0.1 µF	0.1 µF
$5 \ V \pm 0.5 \ V$	0.047 μF	0.33 μF
3 V to 5.5 V	0.1 µF	0.47 μF

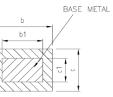

Table 1. VCC vs Capacitor Valu

Package Outline Dimensions


SOP16


	CON	IMON	DIMENSIONS
(UN IT S	OF	MEAS	URE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
A	-	_	1.75
A1	0.10	0.15	0.25
A2	1.25	1.45	1.65
A3	0.55	0.65	0.75
b	0.35	-	0.51
b1	0.34	0.40	0.45
С	0.17	-	0.25
c1	0.17	0.20	0.23
D	9.80	10.00	10.20
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27BSC	
L	0.40	0.60	0.80
L1		1.04R EF	
L2		0.25BSC	
R	0.07	-	-
R1	0.07	-	-
h	0.30	0.40	0.50
θ	0*	-	8*
θ1	6*	8*	10°
θ2	6*	8°	10*
θ3	5°	7*	9*
θ4	5*	7*	9*



SECTION B-B

TSSOP16

0.15 0.05 0.90 0.34 0.20 0.20 0.10 0.10 4.86 1.00 b b1 - 0.22 0.28 0.12 0.13 4.96 6.40 4.40 0.65BS 0.60 1.00RE 0.19 с1 0.15 6.20 4.30 6.60 4.50 E E1 e L 0.45 0.75 0.09 0.09 0.20 0° 10° 8° 14'

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

NOM

MIN

SYMBOL

Α

A1

A2 A3

MAX

SECTION B-B