

32 位, ARM Cortex-M0, BL32F128x2

1. 产品特性

- 内核
 - ARM Cortex-M0 CPU
 - 最高72 MHz主频
 - 指令执行时间最小1周期
 - SWD调试模式
 - SysTick定时器
- 存储器
 - 最大128 k Flash, 带2 k EEPROM
 - 16 kbytes SRAM
 - 支持IAP
 - 支持ISP
- 时钟系统
 - 4 MHz高精度内部RC振荡,全温度范围 精度2%, typical 1%
 - 独立WDT专用32 kHz内部低频RC振荡,全温度范围精度5%
 - 片上PLL,频率可配置为32 MHz/ 48MHz / 64 MHz / 72 MHz
 - 系统时钟分频系数1/2/4/8/16/32/64/128
- 复位及电源管理
 - 工作电压范围2.2 V~5.5 V
 - 7档工作电压检测电路
 - 上电复位 (POR)
 - 低压复位 (BOR)
 - 独立看门狗复位
 - 窗口看门狗复位
 - 外部复位
 - 软件复位
- 低功耗模式
 - 睡眠 (SLEEP) 模式
 - 停止(STOP)模式
 - 中断或事件可唤醒低功耗模式
- Analog
 - 12-Bit Analog-to-Digital Converter (ADC), 支持全差分输入和输入衰减
 - 内部已校准的temperature sensor (±2℃)
 - 最多8个12-Bit Digital-to-Analog Converters(DAC)
 - 2个通用比较器
- 输入/输出端口
 - 最多支持37个GPIO,支持开漏输出/推 挽输出/上拉输入/下拉输入/浮空输入

- 每个IO都具有外部中断功能,支持上/ 下边沿触发
- 每个GPIO端口都能与不同外设功复用
- 大部分外设功能可配置任意GPIO管脚
- 4个增强型定时器
 - 4个16-bit位宽
 - 每个定时器可输出两路带死区的互补 PWM,且带刹车功能
 - 每个定时器带有一路输入捕获功能
 - 单脉冲功能
 - 多路PWM同步输出,无相位差
 - 触发ADC转换
- 通讯接口
 - 2个UART, 16倍过采样, 高精度波特率
 - 2个I2C模块,支持无时钟延展情况下的 1 MHz通信速度
 - 2个SPI, 最高速度为1/2总线时钟频率
- 看门狗定时器
 - 12位独立watch dog(WDT)定时器, 计数溢出产生复位信号,由内部独立 32kHz RC提供时钟
 - 7位窗口WDT定时器由系统时钟驱动。
 - 复位后两个WDT关闭,由程序开启
- 4个可编程逻辑门单元
 - 每个单元4个通道,通道之间可以级联
 - 单元之间也可级联
 - 支持软件逻辑输入
- 工作电压范围: 2.2 V ~ 5.5 V
- 工作温度范围: -40°C~+105°C
- ESD性能: HBM ≥ 6 KV
- 封装: QFN-32L (4 x 4)

2. 产品应用

- 光模块
- 工业控制和自动化
- 消费类和手持设备
- 嵌入式模块

目录

1.	产品	特性		l
2.	产品	应用		1
3.	产品	概述		4
	3.1	BL321	F128x2 系列资源配置	5
4.	订购	消育		5
5.	引鶋	功能描	述	6
	5.1	管脚分	}配图	6
		5.1.1	BL32F6402 QFN32(兼容 LB12)	6
	5.2	引脚复	夏用定义	7
6.	功能	趁简介		13
	6.1	处理器	B内核	13
	6.2	存储器	<u>Б</u>	13
	6.3	电源控	空制	14
		6.3.1	电源与地	14
		6.3.2	上电复位(POR)和掉电复位(BOR)	15
		6.3.3	可编程电压监测器(PVD)	15
	6.4	复位功	力能	16
	6.5	时钟系	系统	16
	6.6	工作植	莫式	17
	6.7	GPIO		17
	6.8	EXTI		18
	6.9	ADC.		18
	6.10	DAC.		19
	6.11	比较器	B 	19
	6.12	2 SPI		20
	6.13	3 I2C		20
	6.14	4 TIME	R	20
	6.15	5 UART		21
	6.16	6 IWDT		21
	6.17	7 WWD	Т	22
	6.18	B PLU		22

BL32F128x2

7.	电气	特性		23
	7.1	测试条件		23
		7.1.1 最小值和量	最大值	23
		7.1.2 典型数值.		23
		7.1.3 典型曲线.		23
		7.1.4 负载电容.	· ·	23
		7.1.5 引脚输入	.电压	23
	7.2	极限参数		24
	7.3	推荐操作参数		24
	7.4	工作电流		24
	7.5	IO 特性		24
	7.6	振荡器		25
	7.7	ADC 特性		26
	7.8	DAC 特性		27
	7.9	PVREF 特性		27
	7.10	温度传感器 TPS	特性	28
	7.11	低压检测和低压复	复位点	28
	7.12	比较器特性		29
	7.13	内部 Flash 特性		29
	7.14	IIC 特性		29
8.	封装	信息		31
	8.1	外形尺寸		31
	8.2	推荐焊盘尺寸		32
	8.3	印章		33
9.	包装	规格		34

3. 产品概述

BL32F128x2 系列微控制器产品采用高性能 32 位 ARM Cortex-M0 内核。最高工作主频 72MHz,内置一块 128k Flash,一块 2k EEPROM 和一块 16k SRAM,多个通用 I/O,提供丰富的高性能模拟接口,包括 1 个 12 位 ADC,最多支持 23 个外部输入通道、最多 8 个 12 位 DAC、2 个通用比较器,同时提供多种数字通信接口,包括 2 个 UART、2 个 I2C、2 个 SPI,包含 4 个增强型定时器和 4 个可编程逻辑门单元。

BL32F128x2 系列产品可稳定工作于-40℃至+105℃的温度范围,供电电压 2.2V 至 5.5V,提供多种功耗模式供用户选择,符合低功耗应用的要求。

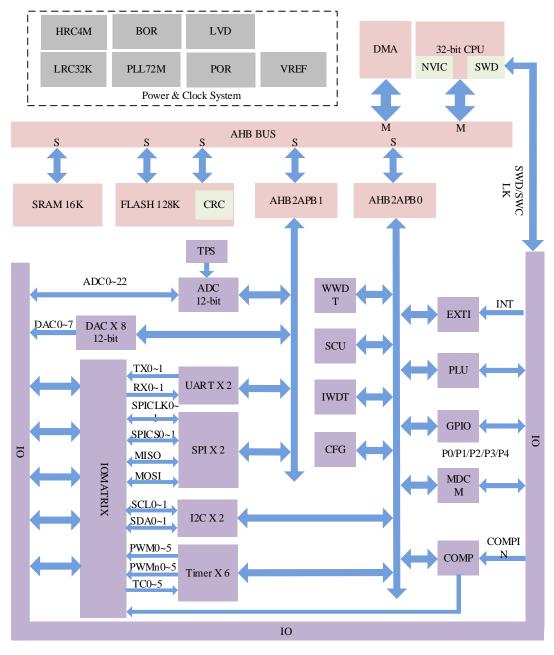


图 1 功能框图

3.1 BL32F128x2 系列资源配置

器件	型号	BL32F6402
Flash 容	量 (kB)	64
SRAM 4	容 (kB)	8
CPU	「频率	ARM Cortex-M0 @72MHz
工作	环境	2.2~5.5V /-40~105°C
定印	 村器	4
	SPI	2
通讯接口	I2C	2
	UART	2
GI	PIO	30
12bit	t ADC	23
12bit	t DAC	4
CC	OMP	2
Pl	LU	4
Т	ΓS	Y
封	装	QFN32

4. 订购指南

产品型号	封装形式	BOOT 位置 及内置代码	工作温度	环保要求	湿敏等级	出货方式	最小包装数量
BL32F6402	QFN32	P03 (SCL0), P02 (SDA0), V86	-40°C∼105°C	Green	MSL3	编带	3000
BL32F6402- BT03-001	QFN32	P04 (SCL0), P02 (SDA0), V87	-40°C∼105°C	Green	MSL3	编带	3000

5. 引脚功能描述

5.1 管脚分配图

5.1.1 BL32F6402 QFN32 (兼容 LB12)

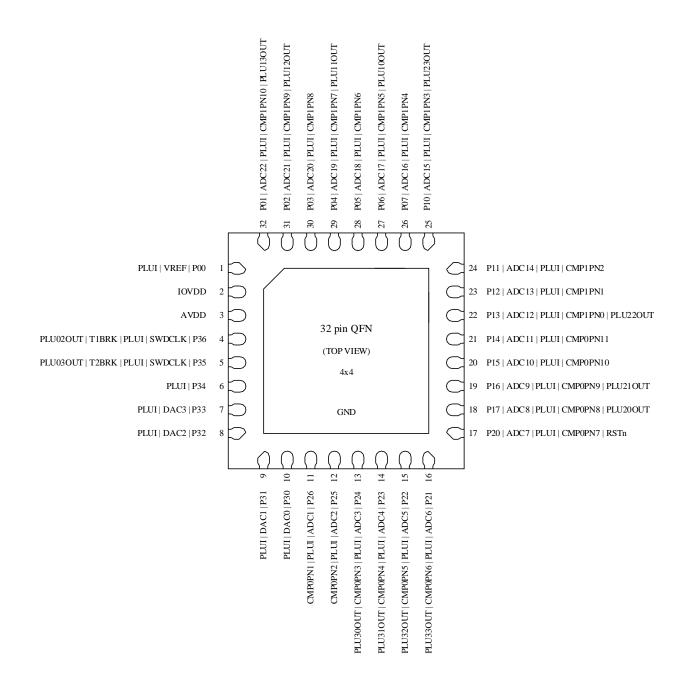


图 2 BL32F6402 QFN32 (兼容 LB12) 管脚图

5.2 引脚复用定义

管脚功能定义见上一节管脚分配图。图中列出了一部分管脚功能,除之外此,可通过 IOMATRIX 配置另外的外设功能。

下面是管脚功能描述:

表 1 引脚复用定义

管脚编号				
QFN32	名称	类型	默认功能	功能描述
LB12 兼容				
2	IOVDD	数字电源		给数字内核与 IO 口供电
3	AVDD	模拟电源		给模拟电路供电
				GPIO: P36
				模拟: 无
				复用外设功能:
4	P36	MIO	SWDCLK	AF0: SWD: debug clock
4	130	MIO	SWDCLK	AF1: PLUI: PLU input
				AF2: T1BRK: timer1 brk input
				AF3: PLU02OUT:PLU output
				PIOMATRIX
				GPIO: P35
		MIO	SWDIO	模拟: 无
	P35			复用外设功能:
E				AF0: SWD: debug data
5				AF1: PLUI: PLU input
				AF2: T2BRK: timer2 brk input
				AF3: PLU03OUT: PLU output
				PIOMATRIX
				GPIO: P34
				模拟: 无
6	P34	MIO	P34	复用外设功能:
O				AF1:PLUI: PLU input
				AF2: T3BRK: timer3 brk input
				PIOMATRIX
				GPIO: P33
				模拟:
7	P33	MIO	P33	DAC3: DAC 通道
,	F 33	MIO	133	复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P32
8	P32	MIO	P32	模拟:
-				DAC2: DAC 通道

—————— 管脚编号				
QFN32	名称	类型	默认功能	功能描述
LB12 兼容				
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P31
				模拟:
0	D2.1	MIO	D2.1	DAC1: DAC 通道
9	P31	MIO	P31	复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P30
				模拟:
10	P30	MIO	P30	DAC0: DAC 通道
10	P30	MIO	P30	复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P26
				模拟:
	P26	MIO	P26	ADC1: ADC 通道
11				CMP0PN1: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P25
				模拟:
				ADC2: ADC 通道
12	P25	MIO	P25	CMP0PN2: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P24
				模拟:
				ADC3: ADC 通道
13	P24	MIO	P24	CMP0PN3: 比较器 P/N 端
13	P24	MIO	F24	复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU30OUT: PLU output
				PIOMATRIX
				GPIO: P23
1.4	D22	3.00	D22	模拟:
14	P23	MIO	P23	ADC4: ADC 通道
				CMP0PN4: 比较器 P/N 端

管脚编号				
QFN32 LB12 兼容	名称	类型	默认功能	功能描述
				复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU31OUT: PLU output
				PIOMATRIX
				GPIO: P22
				模拟:
				ADC5: ADC 通道
15	P22	MIO	P22	CMP0PN5: 比较器 P/N 端
13	ΓΖΖ	WIIO	F Z Z	复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU32OUT: PLU output
				PIOMATRIX
				GPIO: P21
				模拟:
		MIO	P21	ADC6: ADC 通道
1.6	D2.1			CMP0PN6: 比较器 P/N 端
16	P21			复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU33OUT: PLU output
				PIOMATRIX
				GPIO: P20
				模拟:
				ADC7: ADC 通道
	P20	MIO	RSTn	CMP0PN7: 比较器 P/N 端
17				复用外设功能:
				AF0: RSTn: 引脚复位
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P17
				模拟:
				ADC8: ADC 通道
10	5.4	1.00	215	CMP0PN8: 比较器 P/N 端
18	P17	MIO	P17	复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU20OUT: PLU output
				PIOMATRIX
				GPIO: P16
				模拟:
19	P16	MIO	P16	ADC9: ADC 通道
				CMP0PN9: 比较器 P/N 端
				复用外设功能:

——————— 管脚编号				
QFN32	名称	类型 类型	默认功能	功能描述
LB12 兼容				
				AF1: PLUI: PLU input
				AF3: PLU21OUT: PLU output
				PIOMATRIX
				GPIO: P15
				模拟:
				ADC10: ADC 通道
20	P15	MIO	P15	CMP0PN10: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P14
				模拟:
				ADC11: ADC 通道
21	P14	MIO	P14	CMP0PN11: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P13
				模拟:
		MIO	P13	ADC12: ADC 通道
				CMP1PN0: 比较器 P/N 端
22	P13			复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU22OUT: PLU output
				PIOMATRIX
				GPIO: P12
				模拟:
				ADC13: ADC 通道
23	P12	MIO	P12	CMP1PN1: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P11
				模拟:
				ADC14: ADC 通道
24	P11	MIO	P11	CMP1PN2: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
25	P10	MIO	P10	GPIO: P10
23	FIU	MIO	F10	模拟:

 管脚编号				
QFN32	名称	类型	默认功能	功能描述
LB12 兼容				
				ADC15: ADC 通道
				CMP1PN3: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU23OUT: PLU output
				PIOMATRIX
				GPIO: P07
				模拟:
				ADC16: ADC 通道
26	P07	MIO	P07	CMP1PN4: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P06
		MIO	P06	模拟:
	P06			ADC17: ADC 通道
				CMP1PN5: 比较器 P/N 端
27				复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU10OUT: PLU output
				PIOMATRIX
				GPIO: P05
				模拟:
				ADC18: ADC 通道
28	P05	MIO	P05	CMP1PN6: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P04
				模拟:
				ADC19: ADC 通道
20	D0.4	NGO	D0.4	CMP1PN7: 比较器 P/N 端
29	P04	MIO	P04	复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU11OUT: PLU output
				PIOMATRIX
				GPIO: P03
			P03	模拟:
30	P03	MIO		ADC20: ADC 通道
				CMP1PN8: 比较器 P/N 端
				复用外设功能:

管脚编号				
QFN32	名称	类型	默认功能	功能描述
LB12 兼容				
				AF1: PLUI: PLU input
				PIOMATRIX
				GPIO: P02
				模拟:
				ADC21: ADC 通道
31	P02	MIO	P02	CMP1PN9: 比较器 P/N 端
31	102	MIO	102	复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU12OUT: PLU output
				PIOMATRIX
				GPIO: P01
				系统功能: Boot 选择*
		MIO	Boot 选择	模拟:
				ADC22: ADC 通道
32	P01			CMP1PN10: 比较器 P/N 端
				复用外设功能:
				AF1: PLUI: PLU input
				AF3: PLU13OUT: PLU output
				PIOMATRIX
				GPIO: P00
				模拟:
1	P00	MIO	P00	VREF: 片内参考输出
		1,110	100	复用外设功能:
				AF1: PLUI: PLU input
				PIOMATRIX

注:

- 1. 管脚类型里,AIO 代表模拟专用脚,DIO 代表数字专用脚,MIO 代表模拟数字多用途脚。
- 2. P01 的 boot 选择功能在 FLASH 使用手册中详细描述,此管脚在系统复位过程中作为 boot 选择用,不可随 意施加电压,复位后可正常使用复用的功能。
- 3. AF0~AF3: 管脚复用功能序号, 祥见 GPIO 使用手册。
- 4. PLUI 功能为 PLU 的输入功能,具体管脚分配祥见 PLU 使用手册。
- 5. 所有 GPIO 都具有外部中断功能(上升沿触发、下降沿触发、上下边沿、高低电平触发)。
- 6. SWCLK、SDWIO 为 SWD 烧录通信接口。
- 7. 除 PLU 以及模拟功能外,其余的外设功能(UART/I2C0/I2C1/TIMER0~2)可以任意映射每个管脚(参考通用 IO 模块里 GPIOx_MODER/GPIOx_AFR 寄存器)。
- 8. I: input, O: output, S: supply.

6. 功能简介

6.1 处理器内核

BL32F128x2 系列集成了 ARM Cortex-M0 处理器。

ARM Cortex-M0 是用于嵌入式系统的一代 ARM 32 位 RISC 处理器。它的开发旨在提供满足 MCU 实现需求的低成本平台,减少引脚数和低功耗,同时提供出色的计算性能和先进的系统中断响应。ARM Cortex-M0 处理器具有卓越的代码效率,可提供 ARM 内核所期望的高性能。

6.2 存储器

BL32F128x2 内置一块 128k Flash,一块 2k EEPROM 和一块 16k SRAM,以及各外设内的寄存器。各存储空间数据字节以小端格式存储。

Flash 控制器主要特性如下:

- 一块128k Flash + 2k EEPROM
- 支持扇区 (Sector) 和全片擦除
- 0~7等待周期配置
- 支持Flash存储器读取缓冲功能
- 支持数据保护和数据保护模式下进行非法擦除操作时的全片数据擦除
- 程序空间写入与擦除操作自动进行校验
- 支持任意程序区或全部程序区的CRC-16校验码读取
- 空闲时自动进入省电模式

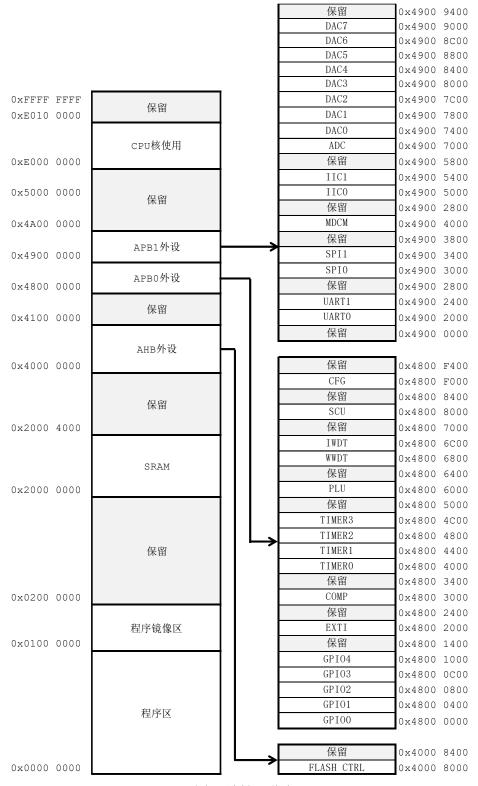


图 3 地址一览表

6.3 电源控制

6.3.1 电源与地

芯片有两组电源和地。IOVDD/GND 为 IO 和数字内核(通过 LDO 产生电压 VDD15)供电,AVDD/AGND 则为 ADC/DAC 等模拟外设供电。这样可以避免 IOVDD 上的噪声干扰传递到模拟

外设,从而保证 ADC/DAC 的精度。IOVDD 和 AVDD 的范围都为 2.2V~5.5V,但互相可以不同。GND 与 AGND 在电路板上应该接到一起。

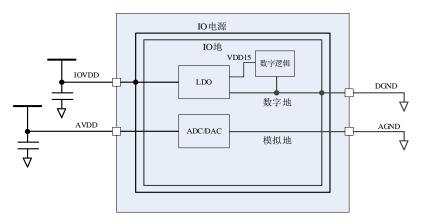


图 4 电源与地

6.3.2 上电复位(POR)和掉电复位(BOR)

芯片内置上电复位(POR)电路和掉电复位电路(BOR),只有当 IOVDD 电压高于阈值(阈值可调)且 VDD15 高于 1.25V 左右时,PORn 才会释放,经过 xxus 的延迟,系统才会开始工作。在掉电时,为了保证系统的安全,在 IOVDD 电压降到阈值以下或 VDD15 低于 1.25V 左右时,PORn 生效,同时系统发生复位。掉电阈值与上电阈值间有迟滞。

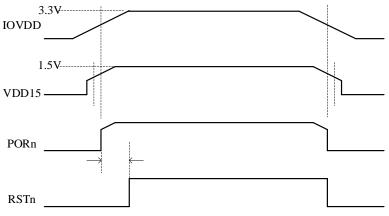


图 5 上电复位和掉电复位波形图

6.3.3 可编程电压监测器 (PVD)

用户可以利用 PVD 来监控 IOVDD 电源。

当 IOVDD 下降到 PVD 阈值以下和(或)当 IOVDD 上升到 PVD 阈值之上时,根据外部中断第 6 线的上升/下降边沿触发设置,会产生 PVD 中断。例如,这一特性可用于执行紧急关闭任务。



图 6 PVD 波形

6.4 复位功能

复位功能由复位控制模块实现。此模块功能主要是完成系统的上电复位顺序,保证系统的正常初始状态,修调模拟参数,并在程序跑飞和供电异常时使芯片回归初始状态,以保证芯片的安全。同时为实现软件对部分关键模块的单独复位,模块内置模块复位寄存器,可对外设模块进行单独复位操作。可以通过读取寄存器 SCU RSR 来确定上次复位的来源。

系统复位源:

- 上电复位
- 掉电复位
- 独立看门狗复位
- 窗口看门狗复位
- 外部管脚复位
- 软件复位

6.5 时钟系统

芯片时钟的管理由时钟控制模块完成。此模块主要负责对不同的时钟源进行控制来产生系统 时钟(系统时钟频率可调),并对各功能模块的时钟进行门控控制以降低动态功耗。

芯片有如下时钟源:

- 内部高速RC(HRC), 4MHz
- 内部低速RC(LRC), 32kHz
- 锁相环(PLL),输出频率可配(72/64/48/32MHz)

以下是芯片时钟构架示意图:

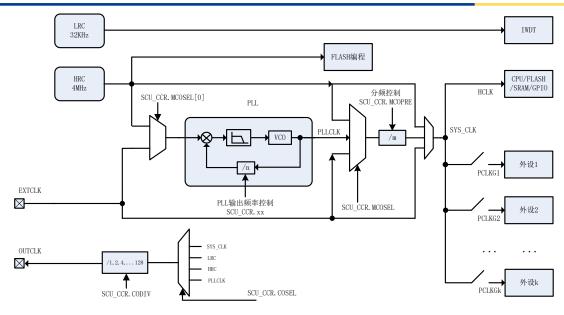


图 7 时钟构架框图

6.6 工作模式

芯片工作模式由电源管理模块(PMU)控制。有三种工作模式:

- 正常工作模式
- 睡眠(SLEEP)模式(内核停止,所有外设包括内核外设,如NVIC、系统时钟(SysTick)等仍在运行)
 - 停止(STOP)模式(所有的时钟都已停止)

模式	进入	退出	时钟	电压调节器(LDO)	
睡眠(SLEEP-NOW 或	WFI	任一中断	CPU 时钟关,对其他时	正常模式	
SLEEP-ON-EXIT)	WFE	唤醒事件	钟无影响	上 吊 侯 八	
/声は(CTOD)	SCB.SCR=0x4	任一外部中断(在外部	关闭所有时钟,HRC 默	默认进入低功耗模式,根	
停止 (STOP)	+WFI 或 WFE	中断寄存器中设置)	认关闭,可配置开启	据配置可保持正常模式	

表 2 工作模式说明

注: SCB 寄存器的描述祥见 ARM 的用户手册。

6.7 GPIO

BL32F128x2 可提供 37 个 IO 端口,每个 IO 端口都具有通用 IO 功能 (GPIO),并可复用为其他外设功能。作为 GPIO,每个 IO 口都支持边沿触发中断,可以把 MCU 从睡眠 (SLEEP)或停止 (STOP)模式下唤醒 (详见 EXTI一章)。GPIO 支持推挽输出、开漏输出、上拉输入、下拉输入、浮空输入,输入带有施密特触发器滤波功能,主要特性如下:

- 每一个I/O可以设置速率
- 输出状态支持开漏输出、推挽输出
- 输入状态支持浮空输入、上拉输入、下拉输入和模拟输入

- 输出状态(输出高/低电平)可进行位操作
- 端口具有复用功能

端口可复用的其它状态:

- 模拟输入,如ADC采样通道,DAC输出通道,比较器输入等
- 数字模块的输入、输出功能。如外部中断输入、PWM输出等

6.8 EXTI

外部中断和事件控制器(EXTI)管理外部和内部异步事件/中断,并生成到 CPU 的事件和中断请求,或到电源管理单元的唤醒请求。

本模块有 6 个能产生事件/中断请求的边沿检测器,通过 MUX 对应 37 个对应输入源。每个输入源可以独立地配置输入类型(脉冲或挂起)和对应的触发事件(上升沿或下降沿或者双边沿都触发)。每个输入源都可以独立地被屏蔽。挂起寄存器使输入源的中断/事件请求得以保持,而不会丢失中断/事件请求。

其主要特性如下:

- 每个中断/事件源都有独立的触发和屏蔽
- 每个中断源都有专用的状态位
- 支持多达6个软件中断/事件请求

6.9 ADC

ADC (Analog-to-Digital Converter) 是指将模拟信号转换为数字信号的器件。本芯片内置一个 1 位 ADC (数模转换器),最多可以提供23个外部通道的模拟信号转换。其主要特性如下:

- 参考电压VREF有3个源可选: VDD、内部1.8V、内部2.4V(1.8V与2.4V可管脚输出)
- 支持全差分/伪差分/单端模式
- 増益可调
- ADC时钟为系统时钟分频
- 共支持28个转换通道
- 23个外部通道
- 5个内部通道: VREF、GNDREF、VDD、TPS、TPS TEST
- 转换通道分为规则组、注入组
- 规则组最多选择16个通道
- 注入组最多选择4个通道
- 支持单次、单次连续、扫描、连续扫描等工作模式
- 各通道采样时间独立可编程
- 规则转换与注入转换均支持软件触发、外部事件触发

- 注入组、规则组各通道转换结果存放在各自数据寄存器,支持左右数据对齐
- 注入组转换结果自动进行数字OFFSET,之后结果存放在数据寄存器
- 支持模拟看门狗功能
- 支持OVR检测功能
- ADC供电要求: 2.2v~5.5v
- 通道输入信号范围: 0~VREF

注:通道选择内部 TPS 时,需要软件对 TPS 值做 2 次平均,如果使用单次转换则建议 ADC 时钟不超过 500kHz。

6.10 DAC

DAC 模块是 12 位电压输出数模转换器。DAC 可以按 8 位或 12 位模式进行配置。在 12 位模式下,数据可以采用左对齐或右对齐。其主要特性如下:

- 8位或者12位输出
- 12位模式下数据左对齐或者右对齐
- 可设置外部触发转换或软件触发转换
- DAC输出Buffer使能可配置
- DAC Reference可以配置选择
- DAC在Stop模式下输出可选择保持

6.11 比较器

比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定,本芯片内置2个比较器,其特性如下:

- 2个比较器, COMP0和COMP1
- 正端输入选择有12个外部引脚输入、内部LDO输出、GND、VDD
- 负端输入选择有12个外部引脚输入、内部LDO输出、GND、VDD
- 一个共用的6位DAC输出可作正负端输入
- 同步与异步输出,比较器同步输出可配置滤波防抖
- 输出极性可配置
- 具有配置锁定功能
- 比较器响应时间可配
- 比较器回差可配
- 比较器正极端电压上升下降沿检测,并可在上升,下降和双沿产生中断

6.12 SPI

SPI 是一个工业标准同步串行接口,允许同时双向传输 8/16bit 位数据(即全双工),最大时钟 频率可达 1/2 PCLK。该 SPI 端口可配置为主机或从机模式,一般由 4 个引脚组成: MISO、MOSI、SCK 和 NSS。

其主要特性如下:

- 可分别工作在主模式和从模式下
- 全双工通讯,主模式下SCK时钟频率可配
- 主从模式最大频率(1/2 PCLK)
- 8-bit/16-bit数据传输,优先传输MSB/LSB可配置
- 时钟极性/相位可配
- 具有宽度为16和深度为8 Tx-FIFO和Rx-FIFO
- Rx overflow和Tx underrun功能
- 主机模式下NSS软件和硬件输出可配置
- 主机模式下NSS输出高有效或低有效可配置

6.13 I2C

I2C 总线使用两条线(SDA 和 SCL)连接到在连接到总线的设备之间传输信息。本芯片有 2 路 I2C 模块。满足 I2C 总线规范,并支持所有传输模式(I2C 总线之间的低速模式)。其主要特性如下:

- 主机和从机之间双向数据传输
- 通信速率:标准模式100kbps快速模式400kbps,支持无时钟延展情况下的1MHz通信速度
- 不同时传输主机之间的仲裁总线上的串行数据损坏
- 串行时钟同步允许具有不同比特率的设备通过一根串行总线进行通信
- 串行时钟同步可用作握手暂停和恢复串行传输的机制
- 从模式下支持7bit地址,地址可配置;四组从机地址,支持多从机地址位MASK
- 支持地址广播(GC)模式(00H广播)
- 支持状态中断
- 支持连续接发数据
- 支持发送和输出存储8x8 bit的FIFO

6.14 TIMER

本芯片內置 4 个 TIMER, 4 个都是 16 位。可提供定时、PWM 和捕获功能。 其主要特性如下:

■ 16位向上,自动重装载计数器

- 16位可编程(可实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任 意数值
 - 支持内外部时钟计数功能和相应中断请求
 - 支持输入捕获功能和相应中断请求
 - 支持带刹车功能PWM输出
- 死区时间可编程的互补输出,刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态
 - 支持单脉冲输出
 - 以及Trigger输出,可用于启动ADC

6.15 UART

通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作 UART。是一种异步全双工串行通信协议,它将要传输的资料在串行通信与并行通信之间加以转换。

当两个设备使用 UART 串口通讯时,由 Tx 和 Rx 两根数据线组成,通信的双方必须约定串口波特率、数据位宽、奇偶校验位、停止位等配置参数,从而按照相同的速率进行通信。本芯片内置 2 个 UART

其主要特性如下:

- 支持异步方式下RS-232S协议,符合工业标准16550
- 方便的波特率编程;波特率可软件配置,16倍波特率采样
- 全双工异步通信
- 支持数据字长:数据7-bit, 8-bit, 9-bit可带奇偶校验位
- 奇偶校验控制:发送奇偶校验位;检查接收的数据字节的奇偶性
- 帧错误检测标志(根据停止位来检测)
- 发送接收端口可带极性配置

6.16 IWDT

IWDT 是一个可配置的 12 位计数器,在 MCU 异常的情况下提供复位,内建 32kHz 低速时钟作为独立计数器时钟。

其主要特性如下:

- 支持寄存器写保护
- 软件启动独立看门狗,只能上电复位禁止看门狗,软件无法关闭
- 内部带有预分频器
- 时钟由独立的内建振荡器提供(可配置在低功耗下是否工作)
- 启动独立看门狗(IWDT)后,递减计数器计数至0x40可产生中断信号,递减计数器计

数至0x000可产生复位信号

■ 启动独立看门狗(IWDT)并且允许中断,在低功耗模式下,可唤醒芯片进入工作模式

6.17 WWDT

窗口看门狗(Window Watchdog WWDG)常用于检测软件错误。软件错误常常来自外部干扰或者意外的逻辑条件,使得程序运行偏离设计者的原意。

窗口看门狗跟独立看门狗类似,超时未刷新递减计数器会导致系统复位;区别在于,窗口看门狗如果过早刷新递减计数器,也会导致系统复位。程序想正常运行(不被看门狗复位),需要周期性在规定时间窗口内刷新递减计数器。

其主要特性如下:

- 可编程的自由运行的递减计数器
- 条件复位
- 计数值低于0x40会导致复位(看门狗启动后)
- 在窗口外重置计数器会导致复位(看门狗启动后)
- 提前预警中断(Early Wakeup Interrupt EWI): 看门狗启动并且使能中断后,递减计数器值到0x40触发

6.18 PLU

可编程逻辑单元(PLU)提供 16 个可供用户编程的数字逻辑模块,并且编程后的操作没有 CPU 的参与。它由支持同步和异步输出的 16 个布尔逻辑运算的模块组成。内部信号和外部信号 都可以作为 PLU 的输入,软件也可以提供输入信号。PLU 的异步输出可以到 I/O 口,或者直接作为外围设备的输入信号。

PLU 在 MCU 中用来实现输入信号组合的布尔逻辑运算。PLU 作为可编程的逻辑功能运算模块,运算后将结果输出到总线以及输入输出端口,以实现相应的逻辑功能。PLU 模块是一个可编程的逻辑功能模块,一个 PLU 含有 16 个逻辑单元,每个逻辑单元可以提供 256 种不同状态的逻辑功能,逻辑单元之间依次级联,以实现更为复杂的逻辑功能。

16个可编程逻辑单元,可以实现内部或外部信号的逻辑功能变换,可分别工作在主模式和从模式下。其主要特性如下:

- 每个单元支持256种不同的组合逻辑功能(与、或、异或等),并包括一个同步时钟触发 器操作
 - 逻辑单元可以输出同步或异步的信号
 - 逻辑单元的异步输出可以作为其他若干单元的输入,以实现更复杂的逻辑功能
 - 串行外围设备(如UART)或其他外围设备(如Timer、EXTI)可以选择作为输入信号
 - 用户可以提供输入信号

7. 电气特性

7.1 测试条件

除非特别说明,所有电压都以 Vss 为基准。

7.1.1 最小值和最大值

除非特别说明,最小和最大数值是在环境温度 TA=25℃, VDD=3.3V 下执行的测试。

7.1.2 典型数值

除非特别说明,典型数据是基于 TA=25℃和 VDD=3.3V。这些数据仅用于设计指导而未经测试。

7.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

7.1.4 负载电容

测量引脚参数时的负载条件示于下图。

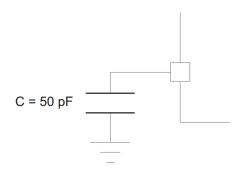


图 8 引脚的负载条件

7.1.5 引脚输入电压

引脚上输入电压的测量方式示于下图。

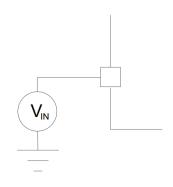


图 9 引脚输入电压

7.2 极限参数

表 3 极限参数

参数		符号	极限值	单位	备注
电源电压		IOV _{DD}	-0.3 ~ +5.8	V	相对于GND
		AV_{DD}	-0.3 ~ +5.8	V	相对于AGND
	输入电压	VI	-0.3 ~ +5.8	V	相对于GND,任何引脚电压
	输出电压	Vo	-0.3 ~IOV _{DD} +0.3	V	相对 1 GND,任刊 引牌电压
正常电压引	灌电流	Іон	18	mA	部分I/O端口最大的灌电流
脚	总灌电流	ΣΙοΗ	-50	mA	所有I/O汇总灌电流
	拉电流	I _{OL}	15	mA	部分I/O端口最大拉电流
	总拉电流	ΣI_{OL}	50	mA	所有I/O汇总拉电流
储存温度		T _{STG}	-55 ~ +150	$^{\circ}$	

7.3 推荐操作参数

表 4 推荐操作参数

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	IOV_{DD}		2.2	_	5.5	V
工作电压	AV_{DD}		2.2	_	5.5	V
工作温度	T _{OPR}		-40	_	105	$^{\circ}$
系统时钟	Fsysclk				72	MHz
内部AHB时钟	Fhelk				72	MHz
外设时钟	FSYSCLK				72	MHz

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

7.4 工作电流

表 5 工作电流

	符号	测试条件	最小值	典型值	最大值	单位
工作电流	I _{DD}	25°C VDD=5.0V 4M主频,所有时 钟关闭	0.5	1.2		mA
SLEEP模式电流	I_{DD}	25°C, VDD 3.3V		TBD		μΑ
STOP模式电流	I_{DD}	25°C, VDD 3.3V		TBD		μΑ

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

7.5 IO 特性

表6通用IO特性

参数	说明	测试条件	最小值	典型值	最大值	单位
V _{IN}	高电平输入电压		0.8VDD		VDD	V
V _{IL}	低电平输入电压		0		0.2VDD	V

	松山长山太	V _{OH} =0.9IOVDD	所有 IO			-16	mA
Іон	输出拉电流	@IOV _{DD} =5.0V					
IoL	输出灌电流	V _{OL} =0.1IOVDD	所有 IO			16	mA
TOL	- 相山催电机	@IOV _{DD} =5.0V					
Rpupd	上下拉电阻	VIN=0V	所有 IO	20	80	120	kΩ
Крири	工工工工程	@IOV _{DD} =5.0V))//H 10	20	80	120	K52
Cinput	端口电容	设计值			-	10	pF
t(INT)		外部中断触发信号	有效时间	200			ns
t(cap)		TIM0/1/2 捕获有效	TIM0/1/2 捕获有效的脉冲宽度				
(1)		@Fsys=4M		Fsys			
I_{lkg}	端口输入漏电流					1	μА
t(nrst)		外部复位输入信	IOVDD=5.0V	100			μs
цшяі)		号有效脉宽	IOVDD=2.2V	100			μs

注: 测试条件: T_A = -40°C ~ +105°C, IOV_{DD} = 2.2V ~ 5.5V, AV_{DD} = 2.2V ~ 5.5V, GND = AGND = 0V 。

表 7 MDIO 专用 IO 特性

参数	说明	测	试条件	最小值	典型值	最大值	单位
V _{IN}	高电平输入电压	25°C VDD=3.6V	25°C VDD=3. 6V		3	3.6	V
V _{IL}	低电平输入电压	25°C VDD=3. 6V	25°C VDD=3. 6V		0.5	0.8	V
Іон	输出拉电流	V _{OH} =3.0V	所有 IO		15		mA
IoL	输出灌电流	V _{OL} =0.2V	所有 IO		15		mA
Rpupd	上下拉电阻	VIN=0V @V _{MDIO} =1.2V	所有 IO	20	80	120	kΩ
Cinput	端口电容	设计值		4	6	10	pF
I_{lkg}	端口输入漏电流					1	μΑ

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

7.6 振荡器

表 8 HRC 特性

		77 0 17 1				
参数	说明	条件	最小值	典型值	最大值	单位
F	输出频率范围		3.8	4M	4.2	MHz
ACCtrim	校准后精度	-40°C~105°C	3.92	4	4.08	MHz
ACCtrim			-2		2	%
Duty	占空比			50		%
T _{start}	启动时间			50		μs
Ion	工作电流				200	μА

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

表 9 LRC 特性

参数	说明	条件	最小值	典型值	最大值	单位
F	输出频率范围		25.6	32	40.6	kHz

ACC _{trim}	校准后精度	-40°C~105°C	30.4	32	33.6	kHz
		-40 C~103 C	-5		+5	%
Duty	占空比		45	50	55	%
Ion	工作电流			1		μΑ

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

表 10 PLL 特性

参数	说明	条件	最小值	典型值	最大值	单位
Fin	输入频率			4		MHz
Fout	输出频率		32	-	72	MHz
Jitter	抖动				300	ps
T _{start}	建立时间			50		μs
Ion	工作电流			900		μΑ

注: 测试条件: T_A = -40°C ~ +105°C, IOV_{DD} = 2.2V ~ 5.5V, AV_{DD} = 2.2V ~ 5.5V, GND = AGND = 0V 。

7.7 ADC 特性

表 11 ADC 特性

符号	参数	条件	最小值	典型值	最大值	単位
V_{DD}	供电电压		2.2	-	5.5	V
V _{REF+}	正参考电压		1.8	-	V _{DD}	V
f_{ADC}	ADC时钟频率		-	-	6	MHz
$t_{\rm S}$	采样时间		4	-	256	1/f _{ADC}
f_{TRIG}	外部触发周期		1	-	-	t _{CONV}
V _{AIN}	输入电压范围		V _{SS}		V_{REF^+}	V
R _{AIN}	输入阻抗		4	-	-	kΩ
R _{ADC}	采样开关电阻		-	-	5	kΩ
Gain	增益		0.25		1	
t _{STAB}	上电时间		-	1	-	μS
t _{CONV}	总的转换时间 (包括采样时间)			13+t _s		1/f _{ADC}
ENOB	有效位数		-	11	-	LSB
N _{bits}	分辨率		-	-	12	LSB
E _T	综合误差		-	-	4	LSB
E _O	偏移误差		-	-	3.5	LSB
E_{G}	增益误差		-6	-	6	LSB
DNL	非线性差分误差		-2	-	2	LSB
INL	非线性积分误差		-2	-	2	LSB

注: 测试条件: T_A = -40°C ~ +105°C, IOV_{DD} = 2.2V ~ 5.5V, AV_{DD} = 2.2V ~ 5.5V, GND = AGND = 0V 。

7.8 DAC 特性

表 12 DAC 特性

参数	说明	测试条件	最小值	典型值	最大值	单位
V _{REF}	基准电压		1.8	-	V_{DD}	V
Vout	输出电压范围		0	-	V _{REF}	V
I _{out}	输出电流范围		-2	-	2	mA
Nbits	分辨率		12			bits
fs	转换速率		-	-	200	ksps
INL	非线性积分误差		-14	-	14	LSB
DNL	非线性微分误差		-0.7	-	0.7	LSB
V _{noise}	输出噪声	V _{REF} =2.4V fs=0.1Hz~300kHz	-	110	-	μVRMS
SW	输出电压摆率		-	1/-1	-	V/µs
t _{settle}	输出建立时间	输出电压为满幅的25%~75%	-	2	-	μs
t _{pwd}	上电稳定时间		-	-	10	μs
THD	总谐波失真	输出频率1kHz,幅度为满幅 10%~90%的正弦波	54	-	-	dB
E _{os}	偏移误差	V _{REF} =2.4V	-	9	-	LSB
E _{fs}	满幅误差	V _{REF} =2.4V	6	-	14	LSB
R _{Load}	外接负载阻抗		2	-	-	kΩ

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

7.9 PVREF 特性

表 13 PVREF 特性

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	基准工作电源电压	输出1.8V	2.2	-	5.5	V
VRangeP	基准工作电	输出2.4V	2.7	-	5.5	V
VREFP	基准输出电压	输出1.8V 环境温度为25 ℃	1.79	1.8	1.81	V
		输出2.4V 环境温度为25 ℃	2.39	2.4	2.41	V
		输出1.8V(-40°C~+105°C)	1.78	1.8	1.82	V
		输出2.4V(-40°C~+105°C)	2.37	2.4	2.43	V
TCREFP	基准温度系数		-	50	-	ppm/℃
CVREFP	基准外接电容	负载电流0μA到 500μA	100	-	-	nF

7.10 温度传感器 TPS 特性

表 14 温度传感器 TPS 特性

参数	说明	测试条件	最小值	典型值	最大值	单位
E _{TOT} (1)	总温度误差		-2		+2	°C

注: 测试条件: T_{A} = -40°C ~ +105°C, IOV_{DD} = 2.2V ~ 5.5V, AV_{DD} = 2.2V ~ 5.5V, GND = AGND = 0V。 (1)总温度误差为采用出厂校准电压偏移的温度误差。

7.11 低压检测和低压复位点

表 15 低压检测和低压复位点

符号	参数	设	置电压	最小值	典型值	最大值	单位
		2.00V	上升点	1.95	2.00	2.05	V
		2.00 V	下降点	1.85	1.90	1.95	V
		2.25V	上升点	2.20	2.25	2.30	V
		2.23 V	下降点	2.10	2.15	2.20	V
		2.50	上升点	2.45	2.50	2.55	V
		2.50V	下降点	2.35	2.40	2.45	V
DVD/DOD		2.75V	上升点	2.70	2.75	2.80	V
PVD/BOR		2.73 V	下降点	2.60	2.65	2.70	V
		3.00V	上升点	2.95	3.00	3.05	V
			下降点	2.85	2.90	2.95	V
		2.601	上升点	3.55	3.60	3.65	V
		3.60V	下降点	3.45	3.50	3.55	V
		4.0077	上升点	3.95	4.00	4.05	V
		4.00V	下降点	3.85	3.90	3.95	V
		上升点		1.75	1.80	1.85	V
BLS	POR上电/掉电复位阈值	下降		1.65	1.70	1.75	V
TRSTTEMPO ⁽¹⁾	复位持续时间			-	-	5	mS

注:测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

⁽¹⁾由设计保证,不在生产中测试,复位持续时间的测量方法为从上电(POR 复位)到用户应用代码读取第一条指令的时刻。

7.12 比较器特性

表 16 比较器特性

参数	说明	测试条件	最小值	典型值	最大值	单位
V _{RANGE}	比较器工作电源电压		2.2		VDD	V
t _{RESP}	比较器反应时间	±5mV 差分输入电压			10	μs
V _{HYS}	比较器迟滞电压			20		mV
	输入电压差		100			mV

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

7.13 内部 Flash 特性

表 17 内部 Flash 特性

符号	参数	测试条件	最小值	典型值	最大值	单位
$t_{ m FSE}$	扇区擦除时间		4	-	5	ms
t _{FHL}	片擦除时间		20	-	40	ms
t_{prg}	字节编程		6	-	7.5	μs
f_{PGM}	编程频率		4	-	72	MHz
NF _{WE}	擦写寿命		20000	-	-	次
		25℃	100			
T_{DR}	数据保存时间	85℃	25			年
		125℃	10			

注: 测试条件: T_A= -40°C ~ +105°C, IOV_{DD}= 2.2V ~ 5.5V, AV_{DD}= 2.2V ~ 5.5V, GND = AGND = 0V。

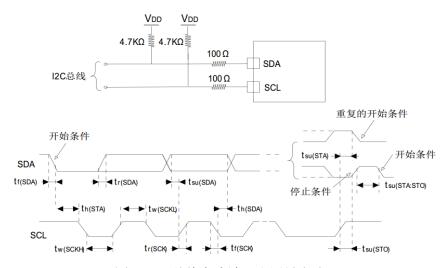
7.14 IIC 特性

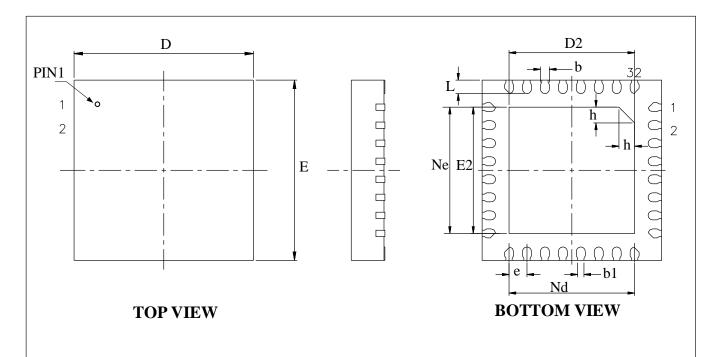
表 18 快速模式下 IIC 接口特性(400 kHz)

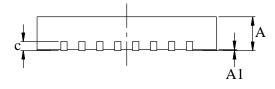
符号	参数	最小值	最大值	典型值	单位
tw(SCLL)	SCL时钟低时间	200		1250	nS
t _{w(SCLH)}	SCL时钟高时间	200		1250	nS
t _{su(SDA)}	SDA建立时间	100		1040	nS
th(SDA)	SDA保持时间	0		210	nS
t _{r(SDA)}	SDA和SCL上升时间		200	180	nS
t _{r(SCL)}	_				
$t_{f(SDA)} \\$ $t_{f(SCL)}$	SDA和SCL下降时间		100	80	nS
th(STA)	开始条件保持时间	200			nS
t _{su(STA)}	重复开始条件建立时间	100			nS
t _{su(STO)}	停止条件建立时间	100		800	nS
tw(STO:STA)	停止条件至开始条件的时间(总线空闲)	1			μS

表 10	标准模式下	IIC 接口特性	(100 kHz)
1X I	7 7/11111111111111111111111111111111111		(TOU KIIZ)

符号	参数	最小值	最大值	单位
tw(SCLL)	SCL时钟低时间	4.7		μS
tw(SCLH)	SCL时钟高时间	4.0		μS
t _{su(SDA)}	SDA建立时间	250		nS
th(SDA)	SDA保持时间	0		μS
$t_{r(SDA)} \\$	SDA和SCL上升时间		1	μS
$t_{r(SCL)} \\$	SDA/HSCL L/[H][H]		1	μο
$t_{f(SDA)} \\$	SDA和SCL下降时间		300	nS
$t_{f(SCL)} \\$	SPININGER PARTIN		300	no
$t_{h(STA)} \\$	开始条件保持时间	4.0		μS
t _{su(STA)}	重复开始条件建立时间	4.7		μS
tsu(STO)	停止条件建立时间	4.0		μS
tw(STO:STA)	停止条件至开始条件的时间 (总线空闲)	4.7		μS



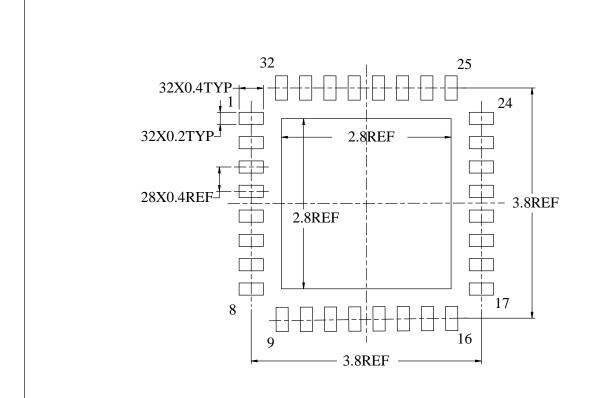

图 10 IIC 总线交流波形和测量电路

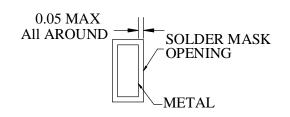

注: 测量点设置于 CMOS 电平: 0.3VDD 和 0.7VDD。

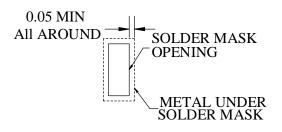
8. 封装信息

8.1 外形尺寸

SIDE VIEW


COMMON DIMENSIONS


SYMBOL	MIN	NOM	MAX		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
b	0.15	0.20	0.25		
b1		0.14REF			
c		0.203REF	7		
D	3.90 4.00		4.10		
D2	2.70	2.90			
e		0.40BSC			
Ne		2.80BSC			
Nd		2.80BSC			
Е	3.90	4.00	4.10		
E2	2.70	2.80	2.90		
L	0.25	0.30	0.35		
h	0.30	0.30 0.35 0.4			


Unit: mm

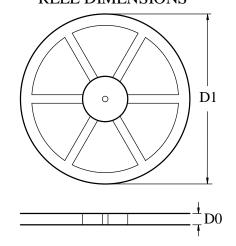
8.2 推荐焊盘尺寸

NON SOLDER MASK DEFINED

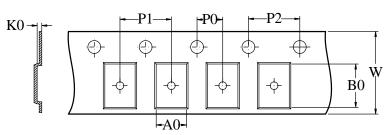
SOLDER MASK DEFINED

Unit: mm

8.3 印章



	印章图	
	说明	
. المحمد		
内容	注释	
6402	产品型号	
WW	生产周	
SSSS	批次号	



9. 包装规格

REEL DIMENSIONS

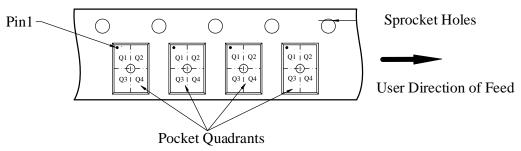
TAPE DIMENSIONS

A0: Dimension designed to accommodate the component width

B0: Dimension designed to accommodate the component length

K0: Dimension designed to accommodate the component thickness

W: Overall width of the carrier tape


P0: Pitch between successive cavity centers and sprocket hole

P1: Pitch between successive cavity centers

P2: Pitch between sprocket hole

D1: Reel Diameter D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

*All dimensions are nominal

Device	Package Type	Pins	SPQ	D1 (mm)	D0 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
BL32F6402	QFN4*4-32L	32	3000	330	16.9	4.3	4.3	1.1	2	8	4	12	Q1
BL32F6402-BT03-001	QFN4*4-32L	32	3000	330	16.9	4.3	4.3	1.1	2	8	4	12	Q1

修订记录

版本	日期	修改内容
V02	2025年9月	新增第2章产品应用;新增第3章产品概述;修改第4章订购指南;修改第5章引脚功能描述;修改第6章功能简介;修改第7章电气特性;修改整体格式;
V01	2024年7月	新建

重要说明

- a. 超出器件的最大额定性能可能导致器件损坏,甚至永久性故障,进而影响机器的可靠性。 在进行电路设计时,请勿超过器件的绝对最大额定值。对于用户不当操作(包括但不限于错误操 作、疏忽等情形)造成的人身伤害、财产损失或其他不良后果,贝岭不承担任何责任;
- b. 本资源仅面向使用贝岭产品进行设计的专业开发人员。贝岭保留对所提供的产品和服务进行校正、修改、功能增强、改进或其他调整变更的权利。未经授权的复制、展示或其他用途均被严格禁止,由此产生的任何索赔、损失或责任,贝岭概不负责。
- c. 本文件基于原始数据提供的技术参数,仅为客户选型和测试贝岭产品进行开发提供便利。 对于客户自行选型测试所引发的使用效果及其他相关问题,贝岭不承担任何担保责任。因用户产 品选用不当造成的后果,贝岭不承担任何责任。
- d. 贝岭有权随时修订或更新产品规格书。本规格书未以明示或默示方式作出任何形式的担保 承诺。
 - e. 贝岭产品的采购均须遵守贝岭的销售条款与质量条款。

上海贝岭股份有限公司

地址:上海市宜山路 810号

邮编: 200233

电话: 021-24261000

公司网址: https://www.belling.com.cn

电子邮件: marketing@belling.com.cn

© 上海贝岭股份有限公司 版权所有