

Current Mode PWM Controller with Frequency Shuffling ME8112

General Description

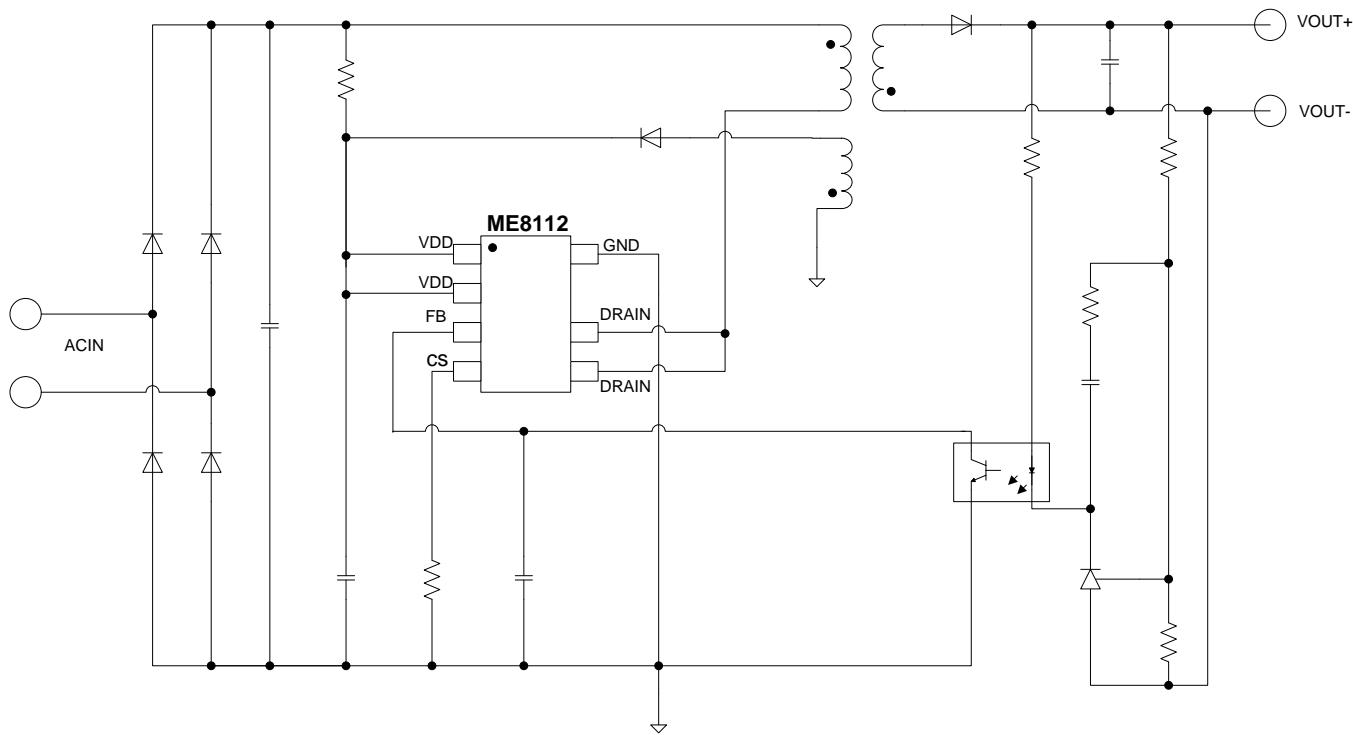
ME8112 integrates a PWM controller and high voltage power MOSFET of 650V/2A. ME8112 has the features of very low standby power (<100mW) when AC power above 220Vac. and cost effective offline flyback converter applications in 18W range.

ME8112 offers complete protection coverage with Cycle-by-Cycle current limiting (OCP), over load protection (OLP), over temperature protection (OTP), and VCC under voltage lockout (UVLO) and over voltage (OVP).

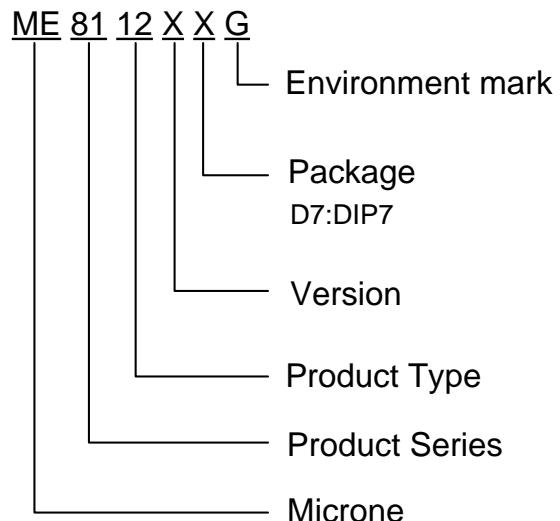
Features

- Low startup current
- Audio Noise Free Operation
- Burst Mode Control
- Frequency Shuffling Technology
- Compensation for ac-in
- Leading Edge Blanking
- Internal Synchronized Slope Compensation
- Good Protection Coverage With Auto Self-Recovery: OCP, OLP, UVLO, OVP, OTP

Typical Application

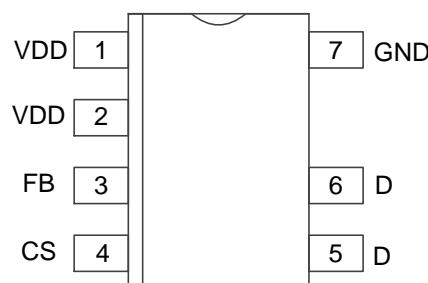

Offline AC/DC flyback converter for

- Switching AC/DC Power battery charge
- Digital cameras and camcorder adapter
- Set-top box power
- Auxiliary power supply for PC and server
- Open-frame SMPS


Package

- 7-pin DIP7

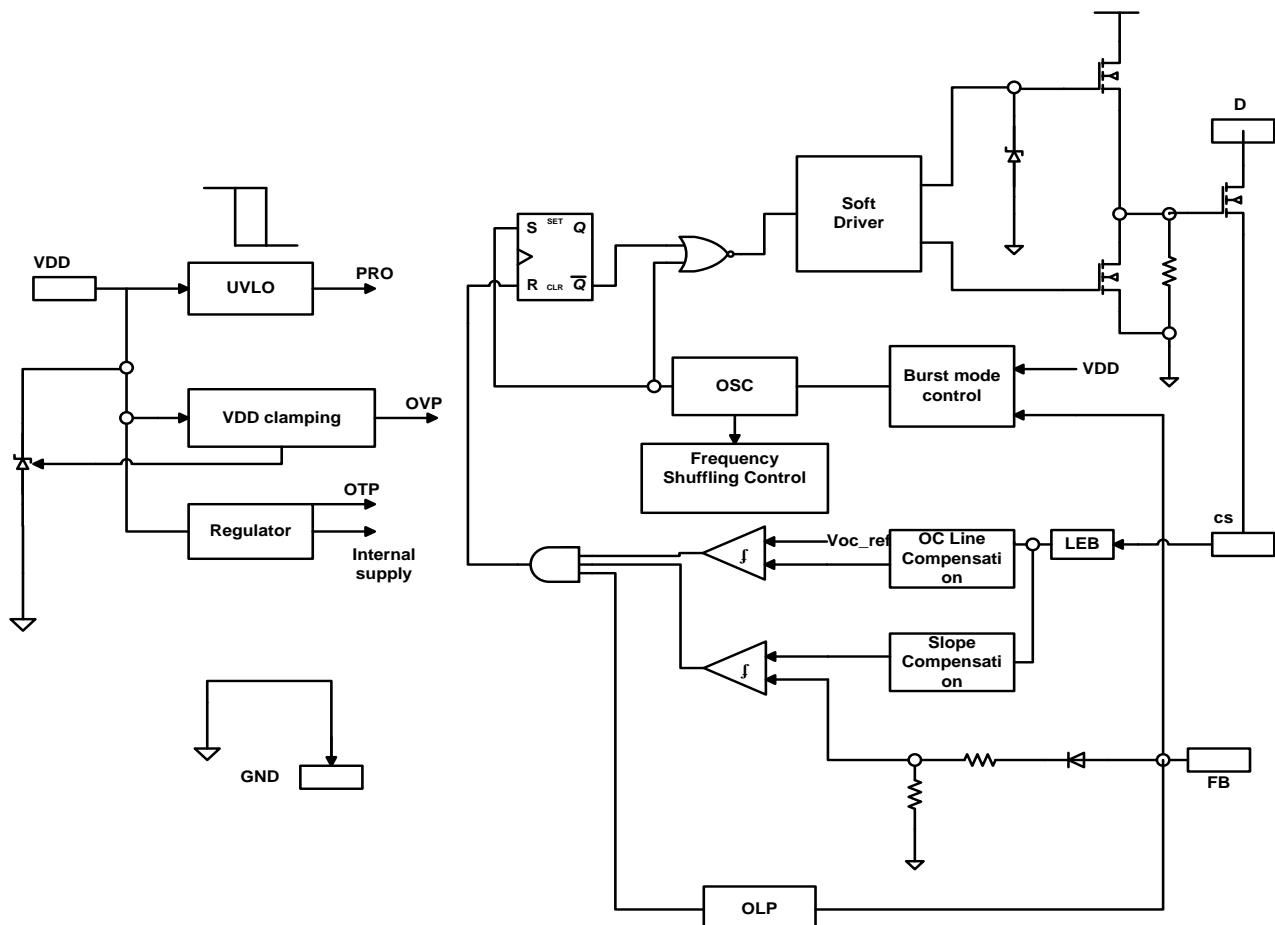
Typical Application Circuit



Selection Guide

product series	product description
ME8112AD7G-A	Maximun output power: 15W; peak output power : 18W; $0.75V \leq V_{TH_OC} \leq 0.8V$; Package: DIP7
ME8112AD7G-B	Maximun output power: 15W; peak output power: 18W; $0.7V \leq V_{TH_OC} \leq 0.75V$; Package: DIP7
ME8112AD7G-C	Maximun output power: 15W; peak output power: 18W; $0.7V \leq V_{TH_OC} \leq 0.725V$; Package: DIP7

Pin Configuration& Pin Assignment



DIP7

PIN Assignments

Symbol	Pin Num.	Functions	Description
VDD	1, 2	Power Supply	Power Supply
FB	3	Input	Feedback
CS	4	Input	Current Sense
D	5,6	Input	Drain of the MOS
GND	7	Ground	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Range	Unit
DRAIN Input Voltage	650	V
VDD Input Voltage	-0.3~30	V
VDD Input Current	0~5	mA
CS, FB Input Voltage	-0.3~7	V
Operating Junction Temperature T _J	-40~85	°C
Storage Temperature T _{STG}	-55~150	°C
Welding Temperature	+260 (10sec)	°C

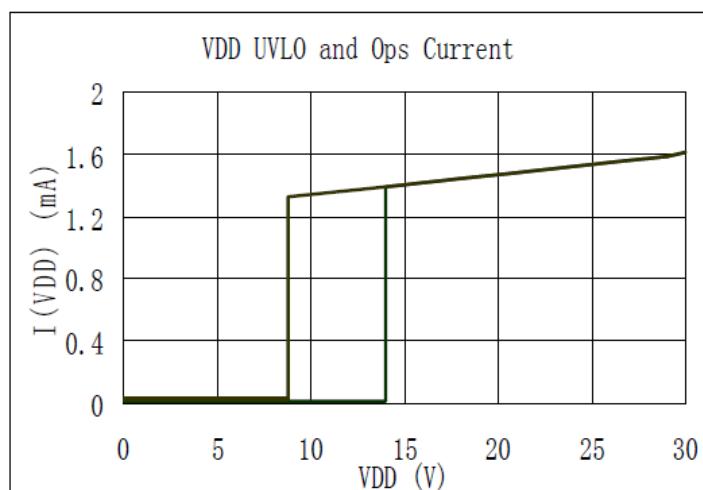
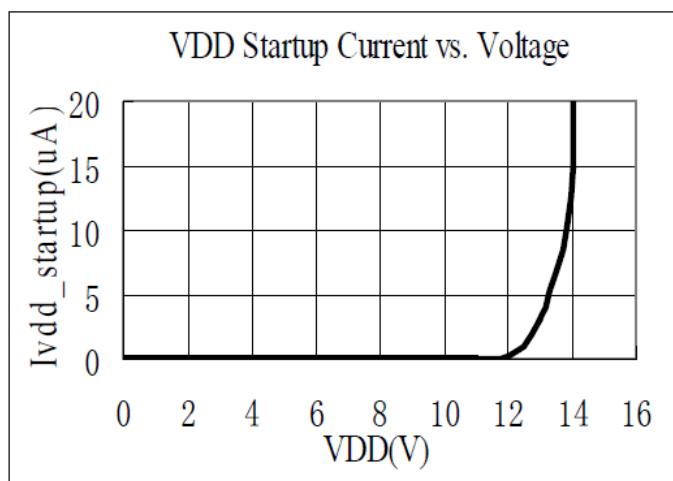
Recommended Operating Condition

Parameter	Range	Unit
VDD Input Voltage	10~30	V
Operating Ambient Temperature	-20~85	°C

Electrical Characteristics (TA = 25°C, VDD=16V, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ.	Max	Unit
Supply Voltage (VDD)						
I _S	Start-Up Current Sourced from VDD Pin	VDD= UVLO _{OFF} -1V, Current flowing into VDD	-	5	20	µA
I _O	Operation Current	V _{FB} =3V	-	1	2	mA
UVLO _{ON}	Under-Voltage Lockout Voltage of VDD Pin		8	9	10	V
UVLO _{OFF}	Start-Up Voltage of VDD Pin		14	15	16	V
VDD_Clamp	Clamp Voltage of VDD Pin	I _{VDD} = 5 mA	32	35	37	V
OVP _{ON}	OVP Voltage of VDD Pin		28	30	32	V
OVP _{OFF}	OVP off Voltage of VDD Pin		24	26	28	V
OTP			145	155	165	°C
Feedback(FB)						
A _{VSENSE}	PWM Input Gain		-	2	-	V/V
Maximum duty cycle	Maximum Duty Cycle	VDD=16V, V _{FB} =3V, V _{CS} =0V	75	80	85	%
V _{FB_Open}	FB pin Open Loop Voltage		4.5	5	5.5	V
I _{FB_Short}	FB pin short circuit current		-	0.4	-	mA
V _{REF_GREEN}	The threshold enter green mode		-	1.8	-	V
V _{REF_BURST_H}	The threshold exit burst mode		-	1.1	-	V
V _{REF_BURST_L}	The threshold enter burst mode		-	1	-	V
V _{TH_PL}	Power Limiting FB Threshold Voltage		-	3.5	-	V
T _{D_PL}	Power limiting Debounce Time		30	38	46	ms

Current Sense Input(CS)



T_blank	Leading edge blanking time		-	220	-	nS	
T _{D_OC}	Over Current Detection and Control Delay		-	120	-	nS	
V _{TH_OC}	Over Current Threshold Voltage at zero Duty Cycle	FB=3.3V	ME8112-A	0.75	-	0.8	V
			ME8112-B	0.7	-	0.75	V
			ME8112-C	0.7	-	0.725	V

Oscillator

Fosc	Normal Oscillation Frequency	VDD=16V,FB=3V,CS=0V	60	67.5	75	KHz
Δf_Temp	Frequency Temperature Stability	VDD = 16V, TA -20°C to 140 °C		5		%
Δf_VDD	Frequency Voltage Stability	VDD = 9-25V,		5		%
Δf_OSC	Frequency Modulation range /Base frequency		-	±6	-	%
F_shuffling	Shuffling Frequency		-	32	-	Hz
F_Burst	Burst Mode Base Frequency		-	25	-	KHz

Drain of the MOSFET (D)

BVdss	Drain-Source Voltage	V _{gs} =0	650	-	-	V
R _{on}	Static Drain-Source On-Resistance	V _{gs} =10V, I _d =1.0A	-	-	4.5	Ω
I _d	Continuous drain current		-	2	-	A

Typical performance characteristics

Operation Description

The ME8112 is a low power off-line SMPS Switcher optimized for off-line flyback converter applications in 18W power range. The 'Extended burst mode' control greatly reduces the standby power consumption and helps the design easily to meet the international power conservation requirements.

Startup Current and Start up Control

Startup current of ME8112 is designed to be very low so that VCC could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet provides reliable startup in application. For a typical AC/DC adaptor with universal input range design, a 2 MΩ, 1/8 W startup resistor could be used together with a VCC capacitor to provide a fast start up and low power dissipation design solution.

Frequency shuffling for EMI improvement

The frequency Shuffling/jittering (switching frequency modulation) is implemented in ME8112. The oscillation frequency is modulated with a random source so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore reduces system design challenge.

Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in ME8112 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. Each time the power MOSFET is switched on, a turn-on spike

will inevitably occur at the sense resistor. To avoid fault trigger, a 220ns leading-edge blanking time is built in. Conventional RC filtering can therefore be omitted. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

Extended Burst Mode Operation

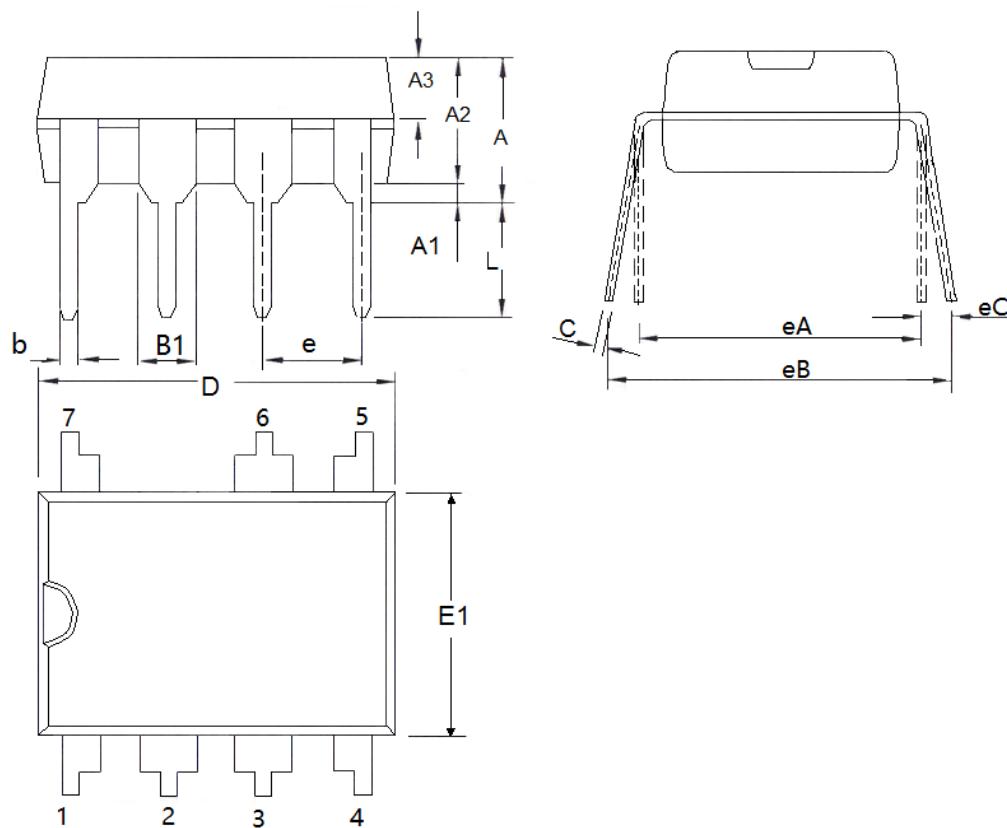
At zero load or light load condition, majority of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy.

The switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below burst mode threshold level and device enters Burst Mode control. The Gate drive output switches only when VCC voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend. The nature of high frequency switching also reduces the audio noise at any loading conditions.

Protection Controls

Good power supply system reliability is achieved

with its rich protection features including Cycle-by-Cycle current limiting (OCP), Over Load Protection (OLP), CS short protection, CS floating protection, over voltage protection (OVP), and Under Voltage Lockout on VCC (UVLO).


The OCP is line voltage compensated to achieve constant output power limit over the universal input voltage range.

At overload condition, When FB input exceeds

power limit threshold value for more than T_{D_PL} , control circuit reacts to shut down the Input power MOSFET. Similarly, control circuit reacts to shut down the switcher. Switcher restarts when VCC voltage drops below UVLO limit.

Packaging Information

- Packaging Type: DIP7

DIM	Millimeters		Inches	
	Min	Max	Min	Max
A	3.6	4.31	0.1417	0.1697
A1	0.5(TYP)		0.0197(TYP)	
A2	3.2	3.6	0.1260	0.1417
A3	1.47	1.65	0.0579	0.0650
b	0.38	0.57	0.0150	0.0224
B1	1.52(TYP)		0.0598(TYP)	
C	0.2	0.36	0.0079	0.0142
D	9	9.4	0.3543	0.3700
E1	6.1	6.6	0.2402	0.2598
e A	7.62(TYP)		0.3(TYP)	
e B	7.62	9.3	0.3000	0.3661
e	2.54(TYP)		0.1(TYP)	
e C	0	0.84	0.0000	0.0331
L	3	3.6	0.1181	0.1417

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.