

PWM Controller of Current Mode and Constant power- ME8125

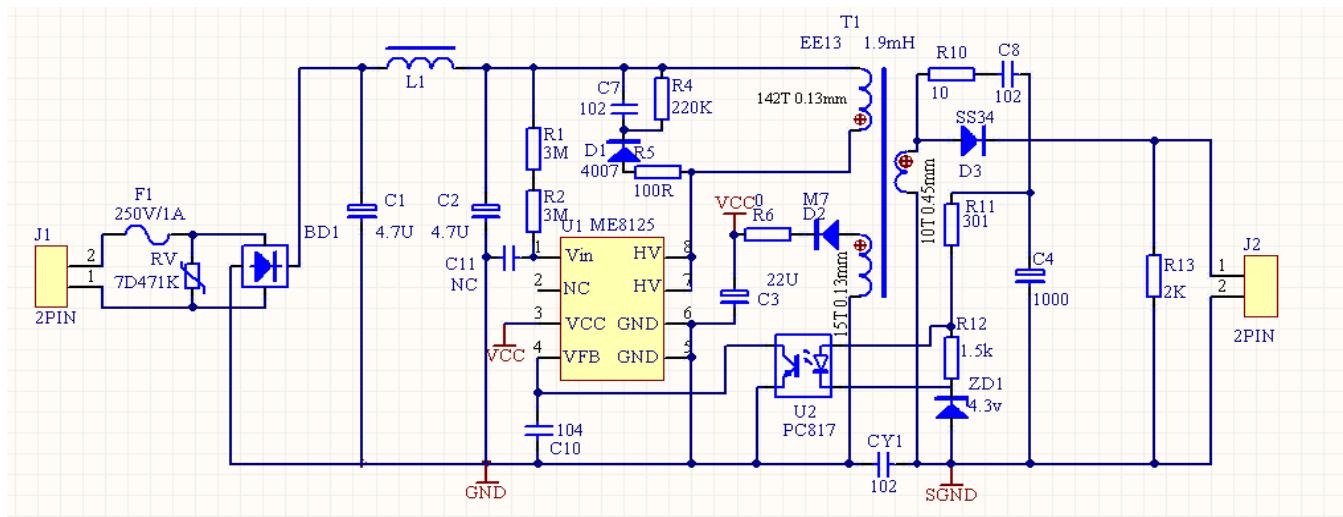
General Description

PWM controller of high-performance current mode is specially designed for AC/DC transformer with high performance and price ratio, which supplies continuous output power of 5W/4W within the range of wide-voltage between 85V and 265V. The combination of optimized reasonable circuit design and bipolar factory technology with high performance and price ratio economizes the whole cost ultimately. The power controller can be applied to the typical flyback circuit topology so as to form a simple AC/DC transformer. The startup circuit inside IC is designed as a particular current inhalation way, so it can start up with the magnification function of the power switch tube itself, which lessens the power consumption for starting the resistance remarkably; when the output power is lower, IC will reduce the working frequency automatically, therefore, the standby power consumption becomes extremely low. When the power tube is closed, the interior circuit will bias it reversely, utilize the characteristic of high pressure resistance CB of bipolar transistor directly, and improve its pressure resistance capacity to the high voltage of 700V, which ensures the security of the power tube.

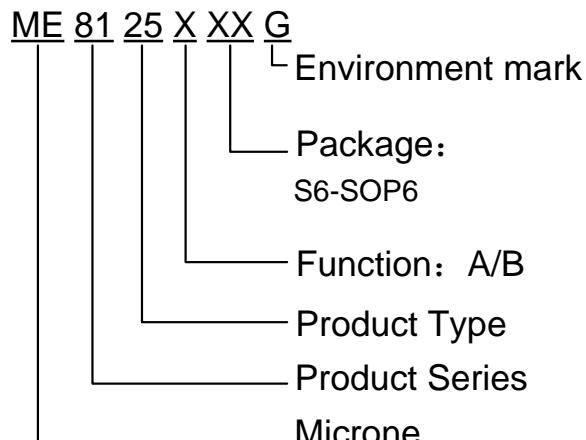
Meanwhile, the perfect function of overload and saturation prevention is provided inside of IC, which can keep away some abnormal status, such as overload, saturation of transformer, and output short circuit, so as to improve the reliability of the power supply. The current limit can be set up by exterior components. The built-in line voltage compensation function keeps the maximum input power limit in the full voltage range.

Typical Application

- Travel charger
- Battery charger
- Portable equipment charging power supply
- Controller power supply for household appliances

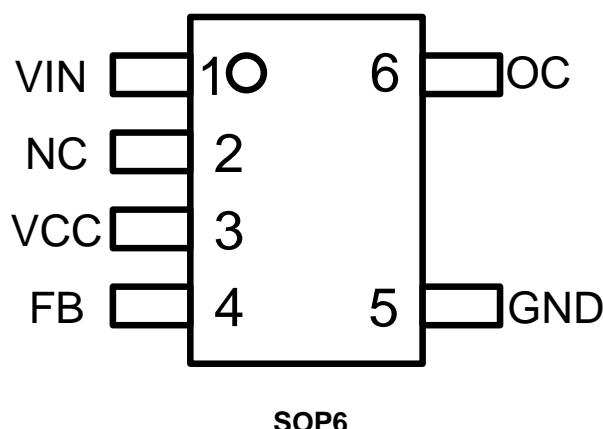

Features

- Set-in high-voltage power switch tube of 700V and few peripheral components.
- The built-in high voltage startup current source to quick start
- With the function of output frequency reduction, the non-output power consumption can be less than 0.1W
- The independent upper-limit current testing controller deals with over-current and over-load of the controller real-timely.
- The period emission pole is turned off and it outputs by deflected voltage, and the pressure resistance of the power tube is improved.
- Set-in current limit resistance with temperature compensation, which makes the current limit precise
- Set-in heat protection circuit
- Startup is accomplished with the magnification function of the switch power tube, and the power consumption of startup resistance is reduced more than 10 times.
- Low startup and operating current
- VCC over-voltage automatic limit
- High conversion efficiency, meet energy star 2.0
- Continuous wide-voltage output power reaches 5W/4W.
- Built in line compensation, accurate LPS control.


Package

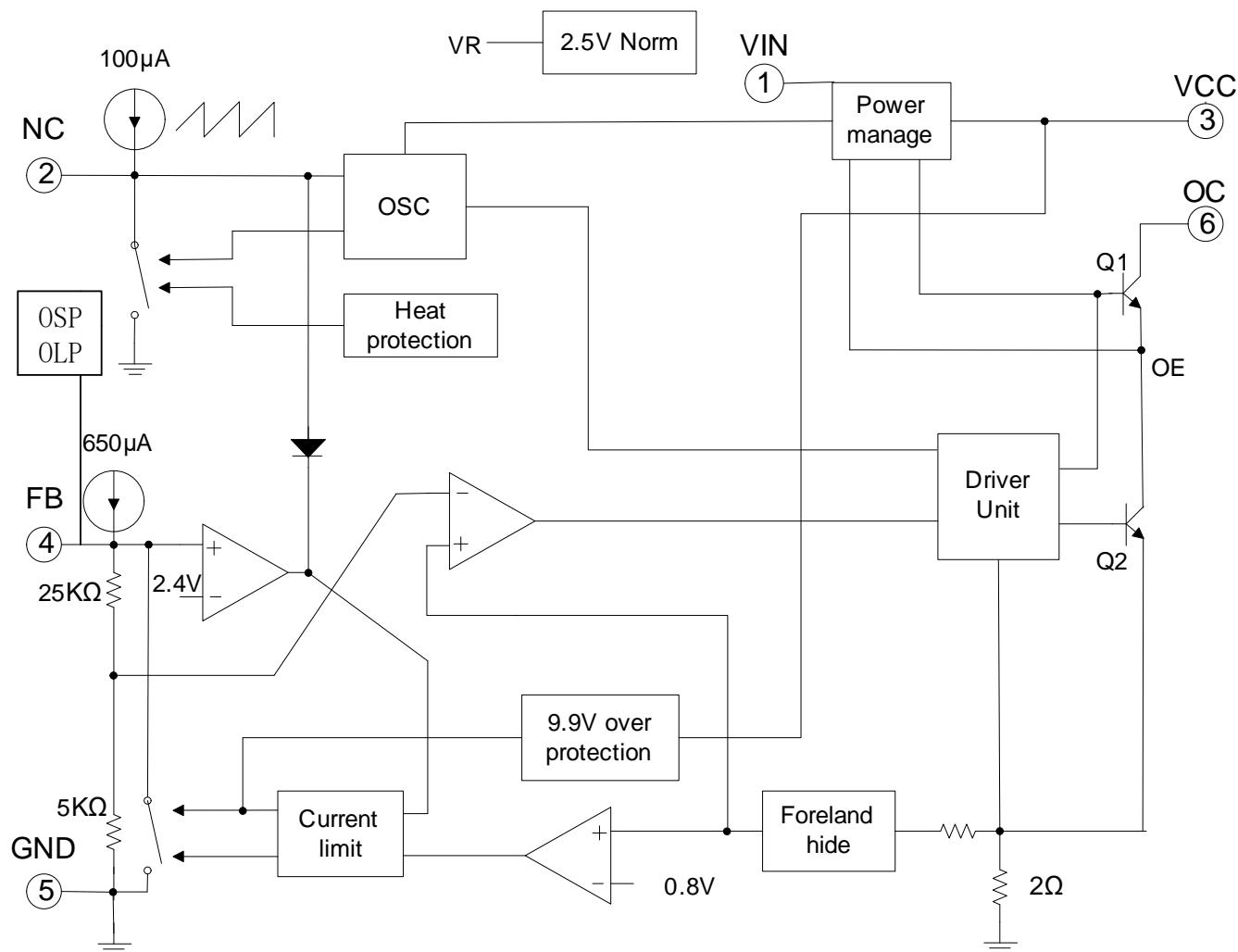
- 6-pin SOP6

Typical Application Circuit



Selection Guide

Product series	product description
ME8125AS6G	Output power 5W
ME8125BS6G	Output power 4W


Pin Configuration& Pin Assignment

Pin Assignment

Pin Number (SOP6)	Symbol	Function
1	VIN	High voltage line compensation current source input, external resistance to high voltage input terminal
2	NC	No connect
3	VCC	Power Supply Pin.
4	FB	Feedback Pin
5	GND	Ground.
6	OC	Output pin, meet switching transformer.

Block Diagram

Absolute Maximum Ratings

Parameter	Ratings	Unit
Power supply voltage, V_{CC}	18	V
Pins input voltage	$V_{CC}+0.3$	V
Endurance voltage of OC collector	-0.3-700	V
Switching current of peak value(ME8125A)	360	mA
Switching current of peak value(ME8125B)	300	mA
Total power dissipation	1000	mW
Operating Ambient Temperature	-20~+125	°C
Storage Temperature	-55~+150	°C
Soldering temperature and time	+260 (Recommended 10S)	°C

Recommended working condition

Parameter	Min	Typ.	Max	Unit
Power supply voltage, VCC	4.5	7	9.5	V
Pins input voltage	-0.3	-	VCC	V
Reverse voltage of peak value	-	-	550	V
Switching current of peak value(ME8125A)	-	-	360	mA
Switching current of peak value(ME8125B)	-	-	300	mA
Oscillating frequency	52	60	66	KHz
Operating temperature	0	-	100	°C

Electrical Characteristics (Ta=25°C, VCC=5.5-7.5V, Rs=1Ω)

Item	Testing condition	Min	Typ.	Max	Unit
Output					
Maximum pressure resistance of switching tube	VCC=0V,loc=1mA	700	-	-	V
on-saturation pressure drop	loc=600mA	-	-	1	V
Output rise-time	CL=1nF	-	-	75	ns
Output fall-time	CL=1nF	-	-	75	ns
Output limit current (ME8125A)	Tj=0-100°C	320	360	400	mA
Output limit current(ME8125B)	Tj=0-100°C	260	300	340	mA
Oscillator					
Oscillating frequency		52	60	68	KHz
Frequency change ratio with voltage	VCC=5.5-9V	-	-	3	%
Frequency change rate with temperature	Ta=0-85°C	-	-	1	%
Feedback					
Input impedance	Pull-up current		-	0.5	mA
	pull-down resistance		-	30	-
Power supply rejection ratio	VCC=5.5V-9V	-	60	70	dB
Current sampling					
Current sampling limit		0.75	0.8	0.85	V
Power supply rejection ratio		-	60	70	dB
Modulation of pulse width					
Maximum duty cycle		53	57	61	%
Minimum duty cycle		-	-	3.5	%
Power current					
Startup acceptance current	Iob=0.5mA	1.6	2	3.4	mA
Startup static current		-	55	80	μA
Static current	VCC=8V	-	3	-	mA

Startup voltage		8.6	9.0	9.3	V
Close voltage of oscillator		3.5	4.0	4.5	V
Restart voltage		-	2.15	-	V
Over-voltage limit margin		9.5	10	10.5	V

Definition of Electric Parameter

- Start-up acceptance current: the current on OC when OB inputs 0.5mA during the start-up phase.
- Start-up Quiescent Current: the current of minimum current source that can make VCC oscillate when VCC meets filter capacitance and adjustable current source, and other pins hang in the air.
- Start-up Voltage: Maximum VCC value of above VCC oscillation.
- Re-start Voltage: Minimum VCC value of above VCC oscillation.
- Close Voltage of Oscillator: VCC value that makes RC oscillator stop oscillating when the above VCC oscillates the falling edge.
- Quiescent Current: VCC power current when FB is grounded with 1.0KΩ of resistance at normal phase.
- FB Pull-up Current: Pull-up current on FB at normal phase when FB is 2.5V.
- Internal Feedback Power Voltage: VCC value of ME8125 power supply of the circuit without peripheral standby at normal phase.

Description of the Principle

During start-up phase, Vref is closed when electrified; FB pull-up power source is closed, the start-up current is input from power tube to VCC through OE; OB controls the base current of power tube and limits the current of power tube collector (namely, ME8125 starts the acceptance current), accordingly, the security of the power tube is ensured; when VCC voltage goes up to 9.0V, the start-up phase is ended, and it comes into the normal phase.

During normal phase, VCC voltage shall keep at 4.5-9.5V VR outputs 2.5V benchmark; FB pull-up current source starts up; the oscillator output OSC1 decides the maximum duty cycle, output OSC2 tries to touch off the power supply to enter open cycle to enter the open cycle, and shield flashing peak current of the power tube ; if FB is less than 3.1V (about between 1.36-3.1V), the cycle of the oscillator will increase with it, the less FB is, the wider the cycle of the oscillator is, until the oscillation stops (This characteristic reduces the standby power consumption of the switching power.) ; if the peripheral feedback tries to make VCC more than 10V, the in-circuit is fed back to FB and makes VCC stabilize the voltage at 10V (According to this characteristic, we can not adopt peripheral feedback circuit, and stabilize the output voltage by in-circuit, but the precision of stabilizing voltage is low); During the open cycle, OB supplies base current for the power tube, OE pulls down the emitter of the power tube to IS, and OB

adopts the driving parameter of ramp current (it refers to that OB on-current is the parameter of IS, when I_S is 0V, OB on-current is about 40mA, then OB on-current increases linearly with IS , when IS increases to 0.6V, OB on-current is about 120mA, this characteristic makes effective use of the output current of OB, decreases the power consumption of ME8125), if IS detects that the specified current FB, it will come into the close cycle; during the close cycle, OB pulls down, the power tube will not shut off immediately, but OE clamps 1.5V (after the power tube is shut off, the base will be biased reversely, which improves the voltage endurance); during open or close cycle, if the power tube is detected beyond the upper limit current, the trigger of the upper limit current will be placed preferentially and forces FB to drop, the duty cycle will become less so as to protect the power tube and transformer; at the beginning of next close cycle or when FB is less than 3.1V, the trigger of the upper limit current will reset. In addition, ME8125 is installed over heat protection internally, when the internal temperature is higher than 150°C, it will broaden the cycle of the oscillator and makes the temperature of ME8125 less than 150°C;

If the VCC drops to about 3.9V, the oscillator is closed, the OSC1 and OSC2 are low, the power is kept off; If VCC declines to 2.2V or so, ME8125 will come into the start-up phase once again.

Application Information

VIN: High voltage current limiting compensation, Current source input.

Starting current input, external starting resistance, the design takes 1206 resistors, resistance is 6M, the maximum driving current is 2mA, the specific starting time requirements prevail, small resistance, quick start, otherwise slow.

FB feedback and control

In normal working state, the voltage of FB will decide the value of the maximum switching current, the higher the voltage is, the bigger the switching current is (it is only limited at the peak value). FB pins pull up 750 μ A power source internally, the pull-down resistance is about 18K Ω (it approximates the equivalent value). In addition, when FB voltage is less than 3.1V, the oscillating cycle will be enlarged, the switching frequency will declined, the more it is less than 3.1V, the lower the switching frequency is. The external FB capacitance will influence the feedback bandwidth, so some external parameters will be affected, such as transient-state characteristic. As for the value of C_{FB} capacitance, the typical application can be selected according to the frequency character of feedback circuit between 10nF and 100nF. (Refer to Fig. 1)

Over temperature protection

The interior of IC integrates the function of over temperature protection. When the internal temperature of the chip reaches 150°C, the over-heat protection circuit will work, it will pull down the clock signal, the switching frequency will fall until the oscillator is turned off. (As shown Fig.2)

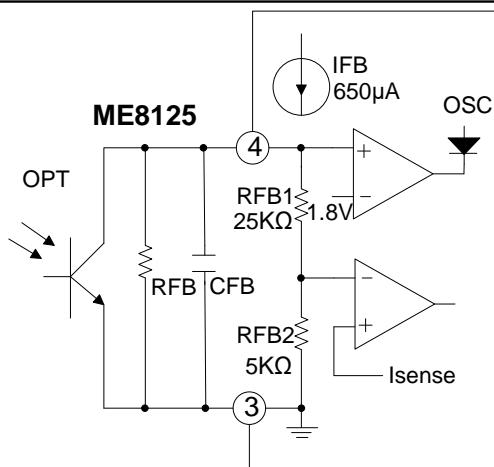


Fig.1

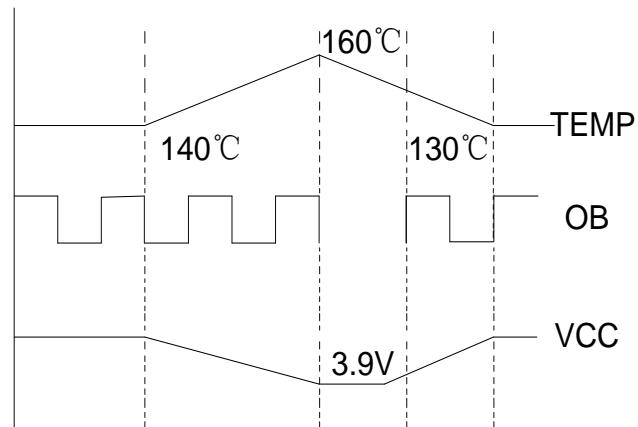


Fig.2

Over-voltage and under-voltage protection

IC has the function of slow-moving under-voltage protection, when the voltage of VCC reaches 9.0V, IC will set out to start, the initial start-up voltage is provided by the driving resistance, the high voltage of input will be injected into the base of the switching tube through I_C current, consequently, the driving voltage is formed. When IC works normally, the voltage of VCC should be keep between 4.5V and 9V (including the situation of full load output), when it decreases to 4V further, IC will begin to reset. As shown in Fig.3:

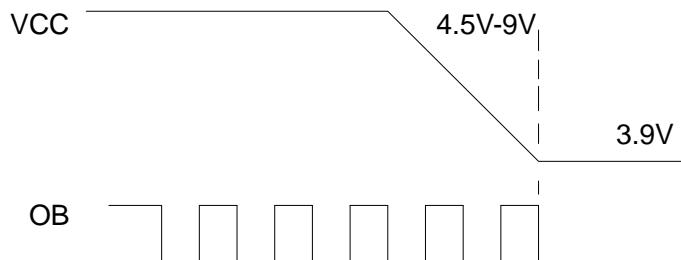
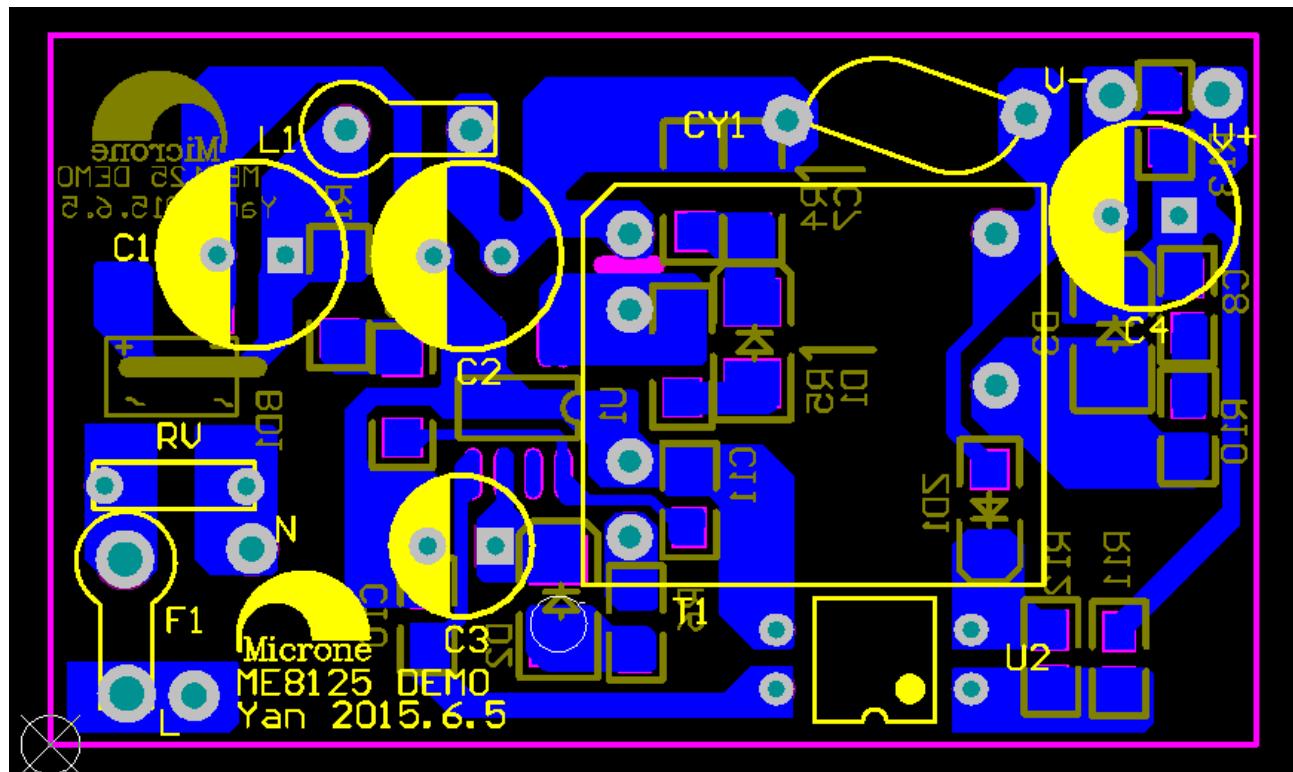


Fig.3

VCC in side IC is provided with a comparator controller of the upper limit voltage, if VCC tries to be more than 10V, the comparator will work, FB will be pulled down, and it will lock VCC to 10V, and reach the limit function of over voltage, by which the voltage feedback function of the front terminal can be accomplished conveniently, the rising phenomenon of the output voltage in large extent can be avoided when the open-loop is output, so as to guarantee the security of the load. Because of the existence of this characteristic, the design of VCC shall be kept at the proper range, so as to avoid VCC rising excessively high when the output is high, and make the output voltage escape from decreasing when IC over-voltage limit works.

Maximum switching current limit


IC has the function of current limit cycle by cycle. It will test every switching current in every switching cycle, if the current fixed by FB or upper limit current prevention is reached, it will come into the close cycle, and the detection of the current has the function of real-time foreland hide, it can shield the switching peak, and avoid the wrong

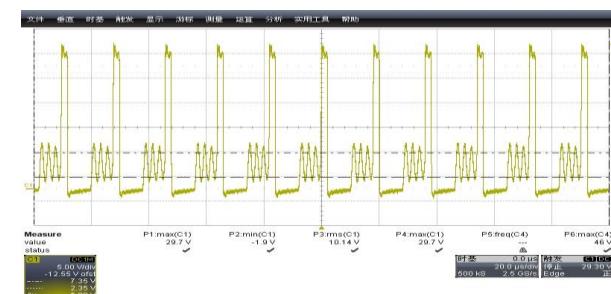
detection of the switching current. Then the reasonable temperature compensation eliminates the influence of temperature, comparing with normal MOSFET (the alteration of R_{on} will be large when the temperature changes) switching chip, the switching current can always be very accurate in a larger range, thus not too much allowance is needed to match a larger working temperature range for the designer when he designs the scenario, and the security of the circuit for use can be improved.

The maximum limit value of switching current for ME8125 is 0.36A/0.3A. When designing a flyback power with 65V of emitter voltage and 0.36A/0.3A of switching current, it can accomplish the output power of more than 5W/4W easily, and meet the broad temperature range.

Requirement of heat elimination

As for a typical power switch, it must have necessary heat elimination measures, so as to avoid that the excessive heat leads to heat protection. The primary heat inside IC is produced by the on-off wasting of the switching tube, so appropriate heat elimination position is Pin6 pin of IC, one wieldy way is to pave PCB copper foil of a certain area on Pin6 pin, what's more, plating tin on the copper foil will improve the heat elimination ability greatly. For an input of 85-265V, the typical application of 5W output and 100mm² copper foil are necessary.

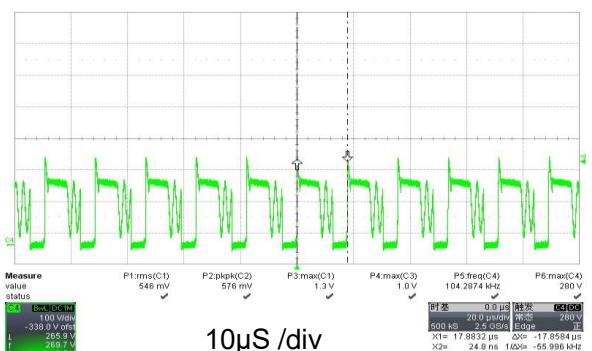
Primary waveform of testing point


1. VCE waveform diagram (X-axis: 10μS/div; Y-axis: 100V/div)

Vin=85V AC, Io=1A

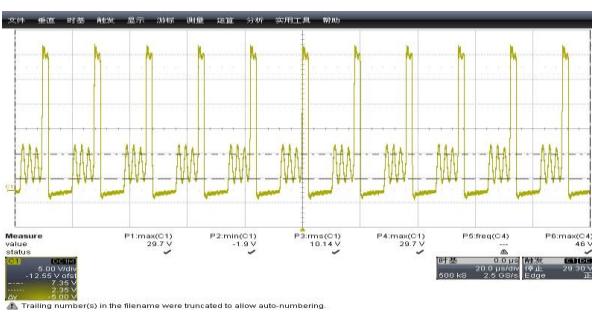
10μS /div

Vin=230V AC, Io=1A



10μS /div

2. ME8125B


VCE waveform diagram (X-axis: 10μS/div; Y-axis: 100V/div)

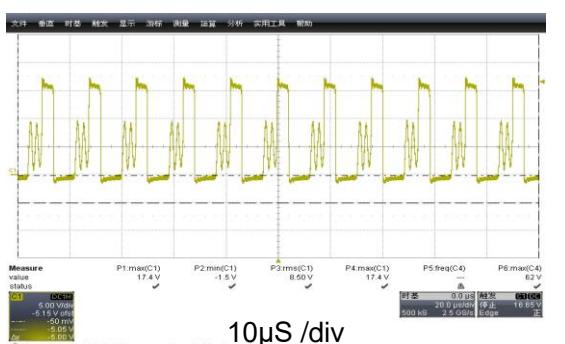
Vin=85V AC, Io=0.8A

10μS /div

Vin=230V AC, Io=0.8A

10μS /div

Vin=115V AC, Io=1A

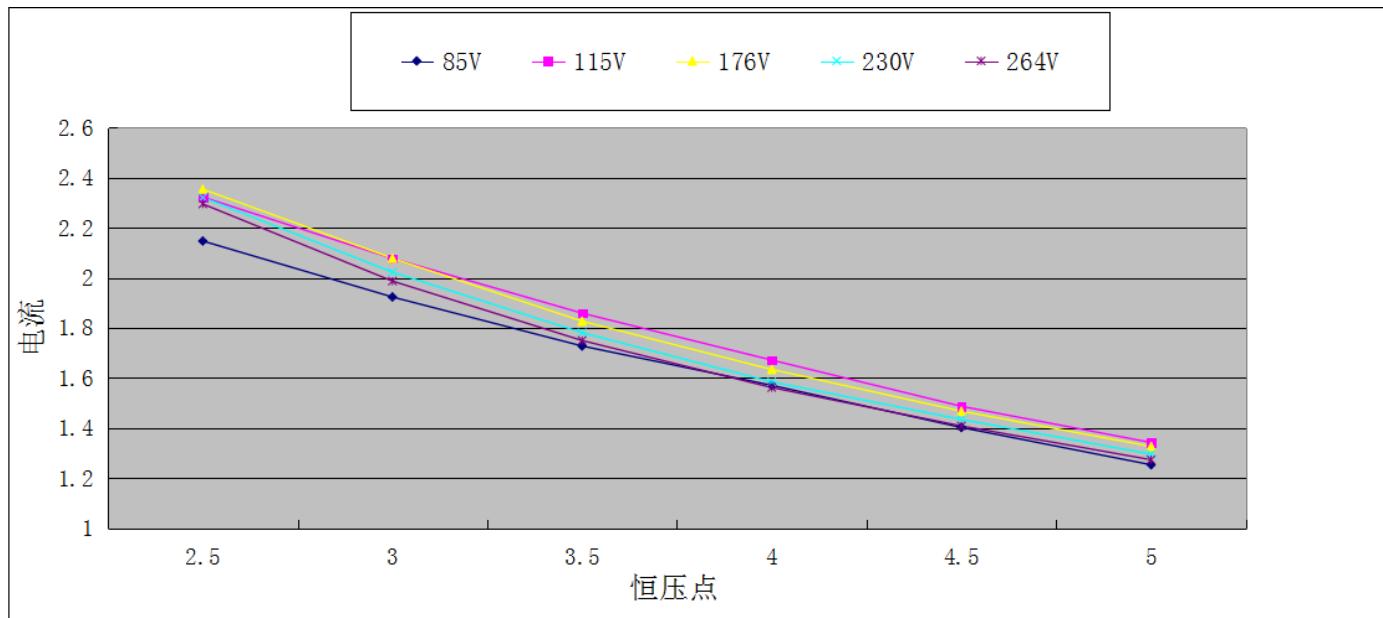

10μS /div

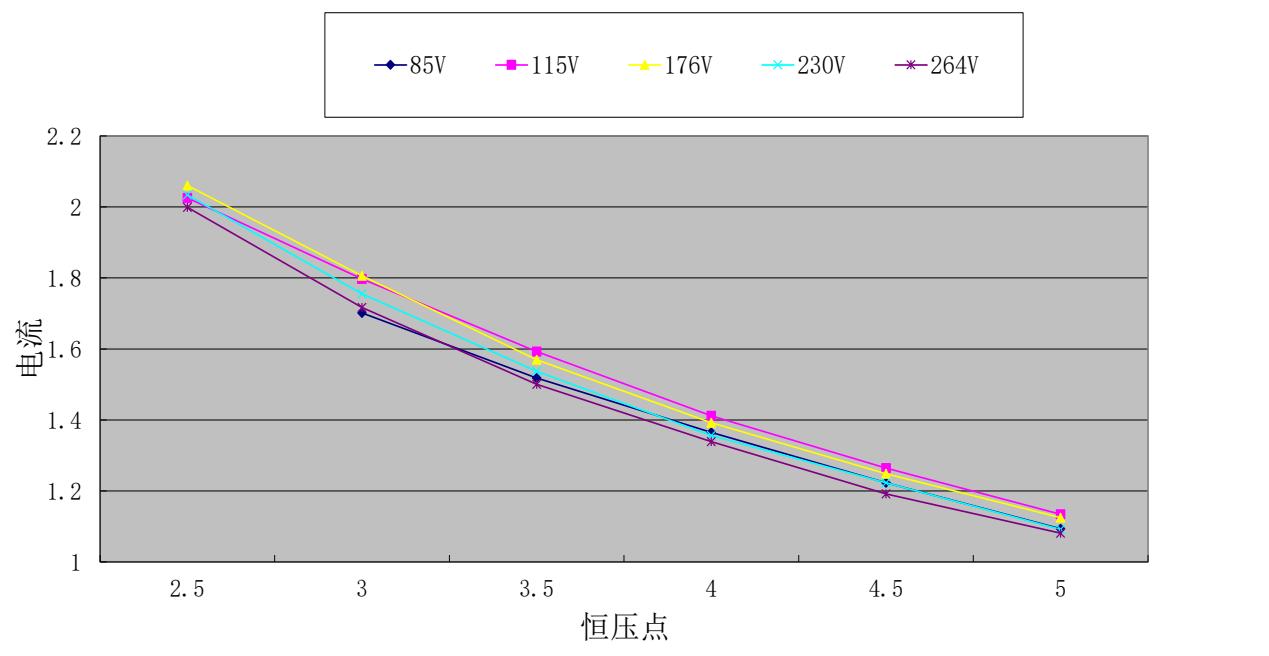
Vin=264V AC, Io=1A

10μS /div

Vin=115V AC, Io=0.8A

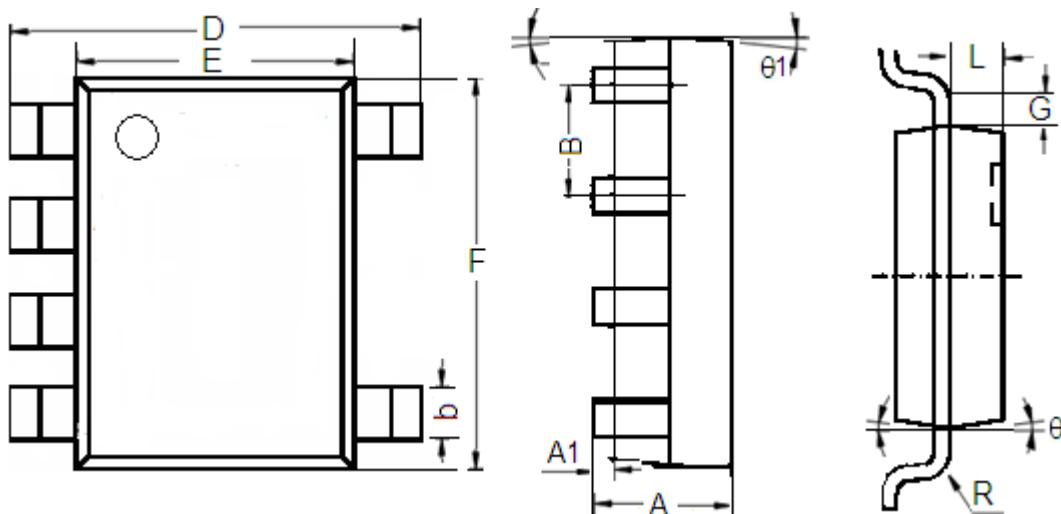
10μS /div


Vin=264V AC, Io=0.8A


10μS /div

Curves of output voltage and current in full voltage range

1. ME8125A



2. ME8125B

Packaging Information

- SOP6

Character	Dimension (mm)		Dimension (Inch)	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.1	0.3	0.004	0.012
B	1.27(Typ.)			0.05(Typ.)
b	0.330	0.510	0.013	0.020
D	5.8	6.2	0.228	0.244
E	3.700	4.100	0.1457	0.1614
F	4.7	5.1	0.185	0.201
L	0.675	0.725	0.027	0.029
G	0.32(Typ.)			0.013(Typ.)
R	0.15(Typ.)			0.006(Typ.)
θ1	7°			7°
θ	8°			8°

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.